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Preface

Our perception of what is knowable and what is unknown, and, in particular, our
viewpoint on randomness, lies at the metaphysical core of our worldview. This
view has been shaped by the narratives created and provided by the experts through
various sources—rational, effable, and (at least subjectively) ineffable ones.

There are, and always have been, canonical narratives by the orthodox main-
stream. Often orthodoxy delights itself in personal narcissism, which is adminis-
tered and mediated by the attention economy, which in turn is nurtured by publicity
and the desire of audiences “to know”—to attain “truth” in a final rather than in a
procedural, preliminary sense. Alas, science is not in the position to provide final
answers.

Alternatively, the narrative is revisionistic. Already Emerson noted
[200],“whoso would be a man must be a nonconformist …Nothing is at last sacred
but the integrity of your own mind.” But although iconoclasm, criticism, and
nonconformism seem to be indispensable for progress, they bear the danger of
diverting effort and attention to unworthy “whacky” attempts and degenerative
research programs.

Both orthodoxy as well as iconoclasts are indispensable elements of progress
and different sides of the same coin. They define themselves through the respective
other, and their interplay and interchange facilitate the possibility to obtain
knowledge about Nature.

And so it goes on and on; one is reminded of Nietzsche’seternal recurrence.1

It might always be like that; at least there is not the slightest indication that our
theories settle and become canonized even for a human life span; let alone indef-
initely. Indeed, any canonization might indicate a dangerous situation and be
detrimental to science. Our universe seems to foster instability and change; indeed,
volatility and compound interest is a universal feature of it.

Physical and other unknowns might be systemic and inevitable, and actually
quite enjoyable, features of science and human cognition. The sooner we learn how

1German original: ewige Wiederkunft [373].
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to perceive and handle them, the sooner we shall be able to exploit their innovative
capacities.

But there is more practical, pragmatic utility to randomness and indeterminism
than just this epistemological joy. I shall try to explain this with two examples.
Suppose that you want to construct a bridge, or some building of sorts. As you try
to figure out the supporting framework, you might end up with the integral of some
function which has no analytic solution you can figure out. Or even worse: The
function is the result of some computation and has no closed analytic form which
you know of. So, all you can do is to try to compute this function numerically.

But this might be deceptive because the algorithm for numerical integration has
to be “atypical” with respect to the function in the sense that all parts of the function
are treated “unbiased.” Suppose, for instance, that the function shows some peri-
odicity. Then, if the integration would evaluate the function only at points which are
in sync with that functional periodicity, this would result in a strong bias toward
those functional values which fall within a particular sync period; and hence a bad
approximation of the integral.

Of course, if, in the extreme case, the function is almost constant, any kind of
sampling of points—even very concentrated ones (even a single point), or periodic
ones yield reasonable approximations. But “random” sampling alone guarantees
that all kinds of functional scenarios are treated well and thus yield good
approximations.

Other examples for the utility of randomness are in politics. Random selection
plays a role in aGedankenexperiment in which one is asked to sketch a theory of
justice and appropriation of wealth if a veil of ignorance is kept over one’s own
status and destiny; or if one imagines being born into randomly selected families
[422].

And as far as the ancient Greeks are concerned, those who practiced their form
of democracy have been (unlike us) quite aware that sooner or later, democracies
deteriorate into oligarchies. This is almost inevitable: Because of mathematical
mechanisms related to compound interestet cetera, an uninhibited growth tends to
increase and accumulate wealth and political as well as economic power into fewer
and fewer entities and individuals. We can see those aggregations of wealth and
powers in action on all political scales, local and global. Two immediate conse-
quences are misappropriations of all kinds of assets and means, as well as
corruption.

As the ancient Athenians watched similar tendencies in their times they came up
with two solutions to neutralize the danger of tyranny by compounded power: one
was ostracism, and the other one was sortition, the widespread random selection of
official ministry as a remedy to curb corruption [271, p. 77]. As Aristotle noted, “the
appointment of magistrates by lot is thought to be democratic, and the election
of them oligarchical” [19, Politics IV, 1294b8, pp. 4408–4409]. The ancient Greeks
used fairly sophisticated random selection procedures, algorithms, and machines
calledvkgqxsqiom(kleroterion) for, say, the selection of lay judges [177, 164].
Then and now, accountable and certified “randomized” selection procedures have
been of great importance for the public affairs.
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This book has been greatly inspired by, and intends to be an “update” of, Philipp
Frank’s 1932 The Law of Causality and its Limits [219, 220]. It is written in the
spirit of the enlightenment and scientific rationality. One of its objective is to give a
status quo of the situation regarding physical indeterminism. Another is the
recognition that certain things are provable unknowable; but that does not mean that
they need to be “irreducibly random.”

As a result, the book is not in praise of what is often pronounced as “discovery
of indeterminism and chance in the natural sciences,” but rather attempts to serve
two objectives: On the one hand, it locates and scrutinizes claims of absolute
randomness and irreducible indeterminism. On the other hand, it enumerates the
means relative limits of expressing truth by finite formal systems.

It is amazing that, when it comes to the perception of chance versus determin-
ism, people, in particular, scientists, become very emotional [497] and seem to be
driven by ideologies and evangelical agendas and furors which sometimes are
hidden even to themselves. Consequently, there is an issue that we need to be aware
of when discussing such matters at all times. Already Freud advised analysts to
adopt a contemplative strategy ofevenly-suspended attention [225, 224]; and, in
particular, to be aware of the dangers caused by “…the temptation of projecting
outwards some of the peculiarities of his own personality, which he has dimly
perceived, into the field of science, as a theory having universal validity; he will
bring the psycho-analytic method into discredit, and lead the inexperienced
astray.” [224]2 And the late Jaynes warns and disapproves the Mind Projection
Fallacy [288, 289, 413], by pointing out that“we are all under an ego-driven
temptation to project our private thoughts out onto the real world, by supposing
that the creations of one’s own imagination are real properties of Nature, or that
one’s own ignorance signifies some kind of indecision on the part of Nature.”

Let me finally acknowledge the help I got from friends and colleagues.
I have learned a lot from many colleagues, from their publications, from their

discussions and encouragements, and from their cooperation. I warmly thank
Alastair Abbott, Herbert Balasin, John Barrow, Douglas Bridges, Adán Cabello,
Cristian S. Calude, Elena Calude, Kelly James Clark, John Casti, Gregory Chaitin,
Michael Dinneen, Monica Dumitrescu, Daniel Greenberger, Jeffrey Koperski,
Andrei Khrennikov, Frederick W. Kroon, José R. Portillo, Jose Maria Isidro San
Juan, Ludwig Staiger, Johann Summhammer, Michiel van Lambalgen, Udo Wid,
and Noson Yanofsky.

This work was supported in part by the European Union, Research Executive
Agency (REA), Marie Curie FP7-PEOPLE-2010-IRSES-269151-RANPHYS grant.
In particular, I kindly thank Pablo de Castro from the Open Access Project of
LIBER - Ligue des Bibliothèques Européennes de Recherche for his kind guidance
and help with regard to the open access rendition of this book.

2 German original [225]: “Er wird leicht in die Versuchung geraten, was er in dumpfer
Selbstwahrnehmung von den Eigentümlichkeiten seiner eigenen Person erkennt, als
allgemeingültige Theorie in die Wissenschaft hinauszuprojizieren, er wird die psychoanalytische
Methode in Misskredit bringen und Unerfahrene irreleiten.”
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Springer-Verlag, Berlin, for a most pleasant and efficient cooperation.
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Chapter 1
Intrinsic and Extrinsic Observation Mode

This chapter introduces some important epistemology. Without epistemology any
inroad into the subject of (un)decidability and (in)determinism may result in confu-
sion and incomprehensibility.

Thereby, and although this book is mainly concerned with physics, we shall not
restrict ourselves to the physical universe, but also consider virtual realities and
simulations. After all, from a purely algorithmic perspective, is there any difference
between physics and a simulacrum thereof?

1.1 Pragmatism by “Fappness”

Throughout this book, the term “fapp” is taken as an abbreviation for “for all practi-
cal purposes” [43]. The term refers to exactly what it says: although a statement may
or may not be strictly correct, it is corroborated, or taken, or believed, or conjectured,
to be true pragmatically relative to particular means. Such means may, for instance,
be technological, experimental, formal, or financial.

A typical example is the possibility to undo a typical “irreversible” measurement
in quantum mechanics: while it may be possible to reconstruct a wave function after
some “measurement,” inmost cases it is impossible to do so fapp [202, 461]; just as in
this great 1870 collection of Mother Goose’s Nursery Rhymes and Nursery Songs by
James William Elliott [199, p. 30]: “Humpty Dumpty sat on a wall, Humpty Dumpty
had a great fall: All the king’s horses, and all the king’s men, Couldn’t put Humpty
together again.”

Another example is the fapp irreversibility in classical statistical mechanics, and
the fapp validity of the second law of thermodynamics [375]: Although in principle
and at the most fundamental, microscopic level of description – that is, by taking the
particles individually – reversibility rules, this reversible level of description mostly
remains inaccessible fapp. InMaxwell’swords [358, p. 279],“The truth of the second

© The Author(s) 2018
K. Svozil, Physical (A)Causality, Fundamental Theories of Physics 192,
https://doi.org/10.1007/978-3-319-70815-7_1
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4 1 Intrinsic and Extrinsic Observation Mode

Fig. 1.1 (Wrong) physical
proof that all nonzero natural
numbers are primes

law is therefore a statistical, not a mathematical, truth, for it depends on the fact that
the bodies we deal with consist of millions of molecules, and that we never can get
hold of single molecules.”

Another, ironic example is the (incorrect) physical “proof” that “all nonzero nat-
ural numbers are primes,” graphically depicted in Fig. 1.1. This sarcastic anecdote
should emphasize the epistemic incompleteness and transitivity of all of our construc-
tions, suspended “in free thought;” and, in particular, the preliminarity of scientific
findings.

1.2 Level of Description

At first glance it seems that physics, and the sciences in general, are organized in
a layered manner. Every layer, or level of description, has its own phenomenology,
terminology, and theory. These layers are interconnected and ordered by method-
ological reductionism.

Methodological reductionismproposes that earlier and less precise levels of (phys-
ical) descriptions can be reduced to, or derived from, more fundamental levels of
physical description.

For example, thermodynamics should be grounded in statistical physics. And
classical physics should be derivable from quantum physics.

Also, it seems that a situation can only be understood if it is possible to isolate
and acknowledge the fundamentals from the complexities of collective motion; and,
in particular, to solve a big problem which one cannot solve immediately by dividing
it into smaller parts which one can solve, like subroutines in an algorithm.

AlreadyDescartesmentioned thismethod in hisDiscours de la méthode pour bien
conduire sa raison et chercher la verité dans les sciences [165] (English translation:
Discourse on the Method of Rightly Conducting One’s Reason and of Seeking Truth)
stating that (in a newer translation [167]) “[Rule Five:] The whole method consists
entirely in the ordering and arranging of the objects on which we must concentrate our
mind’s eye if we are to discover some truth. We shall be following this method exactly
if we first reduce complicated and obscure propositions step by step to simpler ones,
and then, starting with the intuition of the simplest ones of all, try to ascend through
the same steps to a knowledge of all the rest. . . . [Rule Thirteen:] If we perfectly
understand a problem we must abstract it from every superfluous conception, reduce
it to its simplest terms and, by means of an enumeration, divide it up into the smallest
possible parts.”
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A typical example for a successful application of Descartes’ fifth and thirteenth
rule is the method of separation of variables for solving differential equations [204].
For instance, Schrödinger, by his own account [450] with the help of Weyl, obtained
the complete solutions of the Schrödinger equation for the hydrogen atom by sepa-
rating the angular from the radial parts, solving them individually, and finally mul-
tiplying the separate solutions.

So it seems that more fundamental microphysical theories should always be pre-
ferred over phenomenological ones.

Yet, good arguments exist that this is not always a viable strategy. Anderson, for
instance, points out [13] that “the ability to reduce everything to simple fundamental
laws does not imply the ability to start from those laws and reconstruct the universe.
. . . The constructionist hypothesis breaks down when confronted with the twin dif-
ficulties of scale and complexity. The behaviour of large and complex aggregates
of elementary particles, it turns out, is not to be understood in terms of a simple
extrapolation of the properties of a few particles. Instead, at each level of complexity
entirely new properties appear, and the understanding of the new behaviours requires
research which I think is as fundamental in its nature as any other.”

One pointy statement of Maxwell was related to his treatment of gas dynamics, in
particular by taking only themean values of quantities involved, aswell as his implicit
assumption that the distribution of velocities of gas molecules is continuous [234,
p. 422]: “But I carefully abstain from asking the molecules which enter where they
last started from. I only count them and register their mean velocities, avoiding all
personal enquiries which would only get me into trouble.”

Pattee argues that a hierarchy theory with at least two levels of description might
be necessary to represent these conundra [384, p. 117]: “This is the same conceptual
problem that has troubled physicists for so long with respect to irreversibility. How
can a dynamical system governed deterministically by time-symmetric equations of
motion exhibit irreversible behaviour? And of course there is the same conceptual
difficulty in the old problem of free will: How can we be governed by inexorable
natural laws and still choose to do whatever we wish? These questions appear para-
doxical only in the context of single-level descriptions. If we assume one dynamical
law of motion that is time reversible, then there is no way that elaborating more
and more complex systems will produce irreversibility under this single dynamical
description. I strongly suspect that this simple fact is at the root of the measurement
problem in quantum theory, in which the reversible dynamical laws cannot be used to
describe the measurement process. This argument is also very closely related to the
logician’s argument that any description of the truth of a symbolic statement must
be in a richer metalanguage (i.e., more alternatives) than the language in which the
proposition itself is stated.”

Stöltzner and Thirring [489, 493, 529], in discussing Heisenberg’s Urgleichung,
which today is often referred to as Theory of Everything [34], at the top level of a
“pyramid of laws,” suggest three theses related to a “breakdown” to lower, phenom-
enologic, levels:“(i) The laws of any lower level . . . are not completely determined by
the laws of the upper level though they do not contradict them. However, what looks
like a fundamental fact at some level may seem purely accidental when looked at
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from the upper level. (ii) The laws of a lower level depend more on the circumstances
they refer to than on the laws above. However, they may need the latter to resolve
some internal ambiguities. (iii) The hierarchy of laws has evolved together with the
evolution of the universe. The newly created laws did not exist at the beginning as
laws but only as possibilities.” In particular, the last thesis (iii) is in some proximity
(but not sameness) to laws emerging from chaos in Chap.9 (p. 39), as it refers also
to spontaneous symmetry breaking.

General reductionism as well as determinism does not necessarily imply pre-
dictability. Indeed, by reduction to the halting problem (and also related to the busy
beaver function) certain structural consequences and behaviours may become unpre-
dictable (cf. Sect. 6.2 on p. 30). As expressed by Suppes [497, p. 246], “such simple
discrete elementary mechanical devices as Turing machines already have behaviour
in general that is unpredictable.”

1.3 Arguments for and Against Measurement

With regards to obtaining knowledge of physical or algorithmic universes, I encour-
age the reader to contemplate the notion of observation and measurement: what
constitutes an observation, and how can we conceptualize measurement?

In general terms measurement and observation can be understood as some kind
of information transmission from some “object” to some “observer.” Thereby the
“observer” obtains knowledge about the “object.” The quotation marks stand for the
arbitrariness and conventionality of what constitutes an “object” and an “observer.”
These quotation marks will be omitted henceforth.

Suppose that the observer is some kind of mechanistic or algorithmic agent, and
not necessarily equipped with consciousness.

1.3.1 Distinction Between Observer and Object

In order to transmit information any observation needs to draw a distinction between
the observed object and the observer. Because if there is no distinction, there cannot
be any information transfer, no external world, and hardly any common object to
speak about among individuals. (I am not saying that such distinction is absolutely
necessary, but rather suggestive as a pragmatic approach.)

Thereby, information is transferred back and forth through some hypothetical
interface, forming a (Cartesian) cut; see Fig. 1.2 for a graphical depiction. Any such
interface may comprise several layers of representation and abstraction. It could be
symbolic or describable by information exchange. And yet, any such exchange of
symbols and information, in order to take place is some universe, be it virtual or
physical, has to ultimately take place as some kind of virtual or physical process.

http://dx.doi.org/10.1007/978-3-319-70815-7_9
http://dx.doi.org/10.1007/978-3-319-70815-7_6
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Fig. 1.2 A distinction is
made between the observer,
represented by a symbolic
eye and the object,
represented by a symbolic
square; The interface or cut
between observer and object
is drawn by a wavy vertical
line

1.3.2 Conventionality of the Cut Between Observer and
Object

Aswe shall see, inmany situations this view is purely conventional – say, by denoting
the region on one side of the interface as “object,” and the region on the other side
of the interface as “observer.”

A priori it is not at all clear what meaning should be given to such a process of
“give and take;” in particular, if the exchange and thus the information flow tends to
be symmetric. In such cases, the observer-object may best be conceived in a holistic
manner; and not subdivided as suggested by the interface. The situation will be
discussed in Sect. 1.7 (p. 10) on nesting later.

1.3.3 Relational Encoding

Another complication regarding the observer-object distinction arises if information
of object-observer or object-object systems does not reside in the “local” properties
of the individual constituents, but is relationally encoded by correlations between
their joint properties. Indeed there exist states of multi-particle systems which are so
densely (or rather, scarcely) coded that the only information which can be extracted
from them is in terms of correlations among the particles. Thereby the state contains
no information about single-particle properties.

A typical example for this is quantum entanglement: there is no separate existence
and apartness of certain entities (such as quanta of light) “tightly bundled together”
by entanglement. Indeed, the entire state of multiple quanta could be expressed
completely, uniquely and solely in terms of correlations (joint probability distribu-
tions) [58, 365], or, by another term, relational properties [588], among observables
belonging to the subsystems; irrespective of their relativistic spatio-temporal loca-
tions [464].



8 1 Intrinsic and Extrinsic Observation Mode

Consequently, as expressed by Bennett [287], one has “a complete knowledge
of the whole without knowing the state of any one part. That a thing could be in
a definite state, even though its parts were not. [[. . .]] It’s not a complicated idea
but it’s an idea that nobody would ever think of from the human experience that we
all have; and that is that a completely perfectly, orderly whole can have disorderly
parts.”

Schrödinger was the first physicist (indeed, the first individual) pointing this out.
His German term was Verschränkung [452, pp. 827–844]; his English denomina-
tion entanglement [453]: “When two systems, of which we know the states by their
respective representatives, enter into temporary physical interaction due to known
forces between them, and when after a time of mutual influence the systems sepa-
rate again, then they can no longer be described in the same way as before, viz. by
endowing each of them with a representative of its own. I would not call that one but
rather the characteristic trait of quantum mechanics, the one that enforces its entire
departure from classical lines of thought. By the interaction the two representatives
(or ψ-functions) have become entangled.”

Conversely, if in a two-particle entanglement situation a single particle property
is observed on one particle, this measurement entails a complete knowledge of the
respective property on the other particle – but at the price of a complete destruction
of the original entanglement [452, p. 844] a zero sum game of sorts.

It is important to note that Schrödinger already pointed out that there is a trade–
off between (maximal) knowledge of relational or conditional properties (German
Konditionalsätze) on the one hand, and single particle properties on the other hand;
one can have one of them, but not both at the same time.

This has far-reaching consequences.
If the observer obtains “knowledge” about, say, a constituent of an entangled pair

of particles whilst at the same time being unaware of the other constituent of that
pair, this “knowledge” cannot relate to any definite property of the part observed.
This is simply so because, from the earlier quotation, its parts are not in a definite
state.

This gets evenmore viral if one takes into account the possibility thatanymeasured
“property” might not reflect a definite property of the state of that particle prior
to measurement. Because there is no “local” criterion guaranteeing that the object
observed is not entangled with some other object(s) out there – in principle it could
be in a relative, definite state with some other object(s) thousands of light years away.

Worse still, this entanglement may come about a posteriori; that is after – in the
relativistic sense lying “inside” the future light cone originating from the space-time
point of the measurement – a situation often referred to as delayed choice.

Surely, classical physics is not affected by such qualms: there, any definite state
of a multipartite system can be composed from definite states of the subsystems.
Therefore, if the subsystems are in a definite state it makes sense to talk about a
definite property thereof. No complications arise from the fact that a classical system
could actually serve as a subsystem of a larger physical state.
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1.4 Inset: How to Cope with Perplexities

Already at this stage perplexity and frustration might emerge. This is entirely com-
mon; and indeed some of the most renown and knowledgeable physicists have sug-
gested – you would not guess it: to look the other way.

For instance, Feynman stated that anybody asking [211, p. 129] “But how can
it be like that?” will be dragged “ ‘down the drain’, into a blind alley from which
nobody has yet escaped.”

Twoother physicists emphasize in their programmatic paper [228] entitled“Quan-
tum theory needs no ‘Interpretation’ ” not to seek any semantic interpretation of the
formalism of quantum mechanics.

These are just two of many similar suggestions. Bell [43] called them the ‘why
bother?’ers, in allusion to Dirac’s suggestion “not be bothered with them too
much” [175].

Of course, people, in particular scientists, will never stop “making sense” out of
the universe. (But of course they definitely have stopped talking about angels and
demons [266], or gods [547] as causes for many events.)

Other eminent quantum physicists like Greenberger are proclaiming that “quan-
tum mechanics is magic.”

So, the insight that others have also struggled with similar issues may not come
as great consolation. But it may help to adequately assess the situation.

1.5 Extrinsic Observers

When it comes to the perception of systems – physical and virtual alike – there exist
two modes of observations: The first, extrinsic mode, peeks at the system without
interfering with the system.

In terms of interfaces, there is only a one-way flow from the object toward the
observer; nothing is exchanged in the other direction. This situation is depicted in
Fig. 1.3.

Fig. 1.3 The extrinsic
observation mode is
characterized by a one-way
information flow from the
object toward the observer
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Fig. 1.4 The intrinsic
observation mode allowes a
two-way information flow
between the object and the
observer. Both observer and
object are embedded in the
same system

This mode can, for instance, be imagined as a non-interfering glance at the
observed system “from the outside.” That is, the observe is so “remote” that the
disturbance from the observation is nil (fapp).

This extrinsic mode is often associated with an asymmetric classical situation: a
“weighty object” is observed with a “tiny force or probe.” Thereby, fapp this weighty
object is not changed at all, whereas the behaviour of the tiny probe can be used as
a criterion for measurement. For the sake of an example, take an apple falling from
a tree; thereby signifying the presence of a huge mass (earth) receiving very little
attraction from the apple.

1.6 Intrinsic Observers

The second intrinsic observation mode considers embedded observers bound by
operational means accessible within the very system these observers inhabit.

One of its features is the two-way flow of information across the interface between
observer and object. This is depicted in Fig. 1.4.

This mode is characterized by the limits of such agents, both with respect to
operational performance, as well as with regards to the (re)construction of theoretical
models of representation serving as “explanations” of the observed phenomenology.

1.7 Nesting

Nesting [30, 31] essentially amounts to wrapping up, or putting everything (the
object-cut-observer) into, a bigger (relative to the original object) box and consider
that box as the new object. It was put forward by von Neumann and Everett in the
context of the measurement problem of quantum mechanics [206] but later became
widely known as Wigner’s friend [571]: Every extrinsic observation mode can be
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Fig. 1.5 Nesting

transformed into an intrinsic observation mode by “bundling” or “wrapping up”
the object with the observer, thereby also including the interface; see Fig. 1.5 for a
graphical depiction.

Nesting can be iterated ad infinitum (or rather, ad nauseam), like a Russian doll of
arbitrary depth, to put forward the idea that somebody’s observer-cut-object concep-
tualization can be another agent’s object. This can go on forever; until such time as
one is convinced that, from the point of view of nesting, measurement is purely con-
ventional; and suspended in a never-ending sequence of observer-cut-object layers
of description.

The thrust of nesting lies in the fact that it demonstrates quite clearly that extrinsic
observers are purely fictional and illusory, although they may fapp exist.

Moreover, irreversibility can only fapp emerge if the observer and the object
are subject to uniform reversible motion. Strictly speaking, irreversibility is (prov-
able) impossible for uniformly one-to-one evolutions. This (yet not fapp) elimi-
nates the principle possibility for “irreversible measurement” in quantummechanics.
Of course, it is still possible to obtain strict irreversibility through the addition of
some many-to-one process, such as nonlinear evolution: for instance, the function
f (x) = x2 maps both x and −x into the same value.

1.8 Reflexive (Self-)nesting

1.8.1 Russian Doll Nesting

A particular, “Russian doll” type nesting is obtained if one attempts to self-represent
a structure.

One is reminded of two papers by Popper [416, 417] discussing Russell’s paradox
of Tristram Shandy [485]: In volume 1, Chap.14, Shandy finds that he could publish
two volumes of his life every year, covering a time span far shorter than the time
it took him to write these volumes. This de-synchronization, Shandy concedes, will
rather increase than diminish as he advances; onemay thus have serious doubts about
whether he will ever complete his autobiography. Hence Shandy will never “catch
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Fig. 1.6 Reflexive nesting

up.” In Popper’s own words [417, p. 174], “Tristram Shandy tries to write a very full
story of his own life, spending more time on the description of the details of every
event than the time it took him to live through it. Thus his autobiography, instead
of approaching a state when it may be called reasonably up to date, must become
more and more hopelessly out of date the longer he can work on it, i.e. the longer he
lives.”

For a similar argument Szangolies [526] employs the attempt to create a perfectly
faithful map of an island; with the map being part of this very island – resulting in
an infinite “Russian doll-type” regress from self-nesting, as depicted in Fig. 1.6. The
origin of this map metaphor has been a sign in a shopping mall depicting a map of
the mall with a “you are here” arrow [527].

Note that the issue of complete self-representation by any infinite regress only is
present in the intrinsic case – the map being located within the bounds of, and being
part of, the island. Extrinsically – that is, if the map is located outside of the island
it purports to represent – no self-reflexion, and no infinite regress and the associated
issue of complete self-description occurs.

Note also that Popper’s andSzangolies’smetaphors are different in that inPopper’s
case the situation expands, whereas Szangolies’s example requires higher and higher
resolutions as the iteration covers ever tinier regions. In both cases the metaphor
breaks down for physical reasons – that is, for finite resolution, size or precision of
the physical entities involved.

1.8.2 Droste Effect

Reflexive nesting has been long used in art. It is nowadays called the Droste effect
after an advertisement for the cocoa powder of a Dutch brand displaying a nurse
carrying a serving tray with a box with the same image.

There are earlier examples. Already Giotto (di Bondone) in the 14th century
used reflexivity in his Stefaneschi Triptych which on its front side portrays a priest
presenting an image of itself (the Stefaneschi Triptych) to a saint.
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Fig. 1.7 Chaining

The 1956 lithograph “Prentententoonstelling” (“Print Gallery”) by Escher depicts
a young man standing in an exhibition gallery, viewing a print of some seaport –
thereby the print blends or morphs with the viewer’s (exterior) surroundings. The
presentation of reflexivity is incomplete: instead of an iteration of self-images it con-
tains a circular white patch with Escher’s monogram and signature. A “completion”
has been suggested [471] by filling this lacking area of the lithograph with reflexive
content.

For a more recent installation, see Hofstadter’s video camera [283, p. 490] which
records a video screen picture of its own recording.

1.9 Chaining

A variant of nesting is chaining; that is, the serial composition of successive objects.
In this case the cut between observer and object is placed between the “outermost,
closest” object and an observer, as depicted in Fig. 1.7.

Chaining has been used by von Neumann [552, 554, Chap.VI] to demonstrate
that interface or cut can be shifted arbitrarily.
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Chapter 2
Embedded Observers and Self-expression

Empirical evidence can solely be drawn from operational procedures accessible to
embedded observers. Embeddednessmeans that intrinsic observers have to somehow
inspect and thus interact with the object, thereby altering both the observer as well
as the object inspected.

Physics shares this feature with computer science as well as the formalist,
axiomatic approach to mathematics. There, consistency requirements result in lim-
its of self-expressivity relative to the axioms [326, 573] (if the formal expressive
capacities are “great enough”). Indeed, as expressed by Gödel (cf. Ref. [549, p. 55]
and [210, p. 554]), “a complete epistemological description of a language A cannot
be given in the same language A, because the concept of truth of sentences of A
cannot be defined in A. It is this theorem which is the true reason for the existence
of undecidable propositions in the formal systems containing arithmetic.”

A generalized version of Cantor’s theorem suggests that non-trivial (that is, non-
degenerate, with more than one property) systems cannot intrinsically express all
of its properties. For the sake of a formal example [573, p. 363], take any set S
and some (non-trivial, non-degenerate) “properties” P of S. Then there is no onto
function S −→ PS, whereby1 PS represents the set of functions from S to P. Stated
differently, suppose some (nontrivial, non-degenerate) properties; then the set of all
conceivable and possible functional images or “expressions” of those properties is
strictly greater than the domain or “description” thereof.

1An equivalent function is S × S −→ P. Every function f : S −→ PS can be converted into an
equivalent function g, with g : S × S −→ P, such that g(a1, a2) = [ f (a2)](a1) ∈ P. One may
think of a2 as some “index” running over all functions f .

A typical example is taken from Cantor’s proof that the (binary) reals are non-denumerable:
Identify S = N and P = {0, 1}, then {0, 1}N can be identified with the binary reals in the interval
[0, 1]. Any function f (n) = rn with n ∈ N and rn ≤∈ [0, 1] representable in index notation as
rn = 0.rn,1rn,2 . . . rn,k . . . can be rewritten as [ f (n)](k) = g(n, k) = rn,k .

© The Author(s) 2018
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For the sake of construction of a “non-expressible description” relative to the
set of all functions f : S −→ PS, let us closely follow Yanofsky’s scheme [573]:
suppose that, for some non-trivial set of properties P we can define (that is, there
exists) a “diagonal-switch” function δ : P −→ P without a fixed point, such that,
for all p ∈ P, δ(p) �= p. Then we may construct a non- f -expressible function u :
S −→ PS by forming

u(a) = δ(g(a, a)), (2.1)

with g(a, a) = [ f (a)](a).
Because, in a proof by contradiction, suppose that some function h expresses u;

that is, u(a1) = h(a1, a2). But then, by identifying a = a1 = a2, we would obtain
h(a, a) = δ(h(a, a)), thereby contradicting our property of δ. In summary, there is
a limit to self-expressibility as long as one deals with systems of sufficiently rich
expressibility.
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Chapter 3
Reflexive Measurement

The vision that self-reflexivity may, through self-intervention amounting to para-
doxical situations, impose some restrictions on the performance and the capacity of
physical agents to know their own states, is a challenging one. It has continued to
present a source of inspiration.

Before beginning a brief review of the subject, let me recall an anecdote of Bocca
della Veritá, theMouth of Truth, a marble mask in the portico of Rome’s SantaMaria
in the Cosmedin church. According to Rucker’s own account [437, p. 178], “Legend
has it that God himself has decreed that anyone who sticks a hand in the mouth slot
and then utters a false statement will never be able to pull the hand back out. But I
have been there, and I stuck my hand in the mouth and said, “I will not be able to
pull my hand back out.” (May God forgive me!)”

3.1 General Framework

In a very similar manner as discussed earlier in Chap.2 one can identify S with
measurementsM, and Pwith the set of possible outcomesO of these measurements.
Alternatively, one may associate a physical state with P.

For the sake of construction of a “non-measurable self-inspection” relative to
all operational capacities let us again closely follow the scheme involving the non-
existence of fixed points. In particular, let us assume that it is not possible to measure
properties without changing them. This can be formalized by introducing a distur-
bance function δ : O −→ Owithout a fixed point, such that, for all o ∈ O, δ(o) �= o.
Then we may construct a non-operational measurement u : M −→ OM by forming

u(m) = δ(g(m,m)), (3.1)

with g(m,m) = [ f (m)](m).
Again, because, in a proof by contradiction, suppose that some operational mea-

surement h could express u; that is, u(m1) = h(m1,m2). But then, by identifying
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m = m1 = m2, we would obtain h(m,m) = δ(h(m,m)), thereby again clearly
contradicting our definition of δ.

In summary, there is a limit to self-inspection, as long as one deals with systems
of sufficiently rich phenomenology. One of the assumptions has been that there is no
empirical self-exploration and self-examination without changing the sub-system to
be measured. Because in order to measure a subsystem, one has to interact with it;
thereby destroying at least partly its original state. This has been formalized by the
introduction of a “diagonal-switch” function δ : P −→ P without a fixed point.

In classical physics one could argue that, at least in principle, it would be pos-
sible to push this kind of disturbance to arbitrary low levels, thereby effectively
and for all practical purposes (fapp) eliminating the constraints on, and limits from,
self-observation. One way of modelling this would be a double pendulum; that is,
two coupled oscillators, one of them (the subsystem associated with the “observed
object”) with a “very large” mass, and the other one of them (the subsystem asso-
ciated with the “observer” or the “measurement apparatus”) with a “very small”
mass.

In quantummechanics, unless the measurement is a perfect replica of the prepara-
tion, or unless themeasurement is not eventually erased, this possibility is blocked by
the discreteness of the exchange of at least one single quantum of action. Thus there
is an insurmountable quantum limit to the resolution of measurements, originating
in self-inspection.

3.2 Earlier and More Recent Attempts

Several authors have been concerned about reflexive measurements, and, in partic-
ular, possible restrictions and consequences from reflexivity. Their vision has been
to obtain a kind of inevitable, irreducible indeterminism; because determinate states
might be provable inconsistent.

Possibly the earliest speculative note on intrinsic limits to self-perception is
obtained in von Neumann’s book on the Mathematical Foundations of Quantum
Mechanics, just one year after the publication of Gödel’s centennial paper [242]
on the incompleteness of formal systems. Von Neumann notes that [554, Sect. 6.3,
p. 438] “. . . the state of information of the observer regarding his own state could have
absolute limitations, by the laws of nature.”1 It is unclear if he had recursion theo-
retic incompleteness inmindwhen talking about “laws of nature.” Yet, vonNeumann
immediately dismissed this idea as a source of indeterminism in quantummechanics
and rather proceeded with the value indefiniteness of the state of individual parts of a
system – comprising the object and the measurement apparatus combined – in (what
Schrödinger later called) an entangled state (cf. the later Sects. 12.8 and 12.10).

1German original [552, Sect. 6.3, p. 233], “. . . die Informiertheit des Beobachters über den eigenen
Zustand könnte naturgesetzliche Schranken haben.”.

http://dx.doi.org/10.1007/978-3-319-70815-7_12
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Probably the next author discussing similar issues was Popper who, in a two-part
article on indeterminism in quantum physics and in classical physics [416, 417]
mentions that, like quantum physics, even classical physics “knows a similar kind
of indeterminacy, also due to ‘interference from within.’ ”

In what follows I shall just cite a few later attempts and survey articles with no
claim of completeness. Indeed many authors appears to have had similar ideas inde-
pendently; without necessarily being aware of each other. This is then reflected
by a wide variety of publications and references. Many of the following refer-
ences have already been discussed and listed in my previous reviews of that subject
[499, 516].

Zwick’s quantum measurement and Gödel’s proof [595], cites, among other
authors, Komar [317] and Pattee [384, p. 117] (cf. the quote on p. 4) as well as
Lucas [345] (although the latter did only discuss related issues regarding minds-as-
machines).

According to his own draft notes written on a TWA in-flight paper on Feb. 4–6,
1974 [568]Wheeler imagined adding““participant” to “undecidable propositions”
to arrive at physics.” Alas, by various records (cf. from Bernstein [59, p. 140–141]
andChaitin [499, p. 112], including thisAuthor’s private conversationwithWheeler),
Gödel himself has not been very enthusiastic with regards to attempts to relate quan-
tum indeterminism, and, in particular, with regards to quantum measurements, with
logical incompleteness.

More recently, Breuer has published a series of articles [72–74] on the impos-
sibility of accurate self-measurements. Lately Mathen [356, 357] as well as Szan-
golies [525, 526] have taken up this topic again.
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Chapter 4
Intrinsic Self-representation

Having explored the limits and the “negative” effects of the type of self-exploration
and self-examination embedded observers are bound to we shall now examine the
“positive” side of self-description. In particular, we shall prove that, at least for “non-
trivial” deterministic systems (in the sense of recursion theory and, by the Church-
Turing thesis, capable of universal computation), it is possible to represent a complete
theory or “blueprint” of itself within these very systems.

Von Neumann created a cellular automaton model [555] which does exactly that: it
is capable of universal communication, as well as of containing a “blueprint” or code
of itself, as well as of “self-reproduction” based on this blueprint. Later such cellular
automaton examples included Conway’sGame of Life, or Wolfram’s examples [575].

To avoid any confusion one must differentiate between determinism and pre-
dictability [375]. As has already been pointed out by Suppes [497], any embodiment
of a Turing machine, such as in ballistic n-body computation [510] is deterministic;
and yet, due to the recursive undecidability of the halting problem, certain aspects
of its behaviour, or phenomenology, are unpredictable.

The possibility of a complete formal representation of a non-trivial system (capa-
ble of universal computation) within that very system is a consequence of the recur-
sion theorem [579] and Kleene’s s-m-n theorem: Denote the partial function g that
is computed by the Turing-machine program with description i by ϕi .

Suppose that f : N −→ N is a total (defined on its entire domain) computable
function. Then there exists an n0 ∈ N such that ϕ f (n0) = ϕn0 . For a proof, see
Yanofsky [579].

The s-m-n theorem states that every partial recursive function ϕi (x, y) can be
represented by a total recursive function r(i, x) such that ϕi (x, y) = ϕr(i,x)(y),
thereby hard-wiring the input argument x of ϕi (x, y) into the index of ϕr(i,x).

Now we are ready to state that a complete formal representation or description of
a non-trivial system (capable of universal computation) is given by the number n0 of
the computable function ϕn0 which always (that is, for all input x) outputs its own
description; that is, ϕn0(x) = n0.
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22 4 Intrinsic Self-representation

For the sake of a proof, suppose that p : N × N −→ N is the projection function
p(m, n) = m. By the s-m-n theorem there exists a totally computable function r such
that ϕr(y)(x) = p(y, x) = y. And by the recursion theorem, there exists a complete
description n0 such that ϕn0(x) = ϕr(n0) = p(n0, x) = n0.
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Part II
Provable Unknowns



Chapter 5
On What Is Entirely Hopeless

According to his own narrative, and totally unaware of Saint Augustine of Hippo’s
as well as Nicholas of Cusa’s (aka Nicolaus Cusanus’) notion of learned ignorance
(Latin: docta ignorantia), the Baron Münchhausen pulled himself (and his horse)
out of a mire by his own hair [88, Chap.4]. (This story is not contained in Raspe’s
earlier collections [427].) In the following we shall be concerned with the question
exactly why it is entirely hopeless to pursue the strategy suggested by the Baron
Münchhausen; and why one should be concerned about this. More generally, is it
(im)plausible to attempt to reach out into some external domain with purely intrin-
sic means; that is, by operational (from the point of view of intrinsic, embedded
observers) capacities and means which cannot include any “extrinsic handle,” or
Archimedean point?

Most likely everyone pursuing that kind of strategy –with the sole exception of the
Baron Münchhausen – has drowned. But maybe something general can be learned
from this flawed attempt of self-empowerment? And Münchhausen’s vain attempt
to lift himself entirely (and not only parts of himself, such as his hair) indicates that
some internal means – tactics which rely entirely on operations referring to, and
movements within himself, with rare exceptions1 – are useless.

Epistemic issues resembling this metaphor have been called Münchhausen
trilemma: as Albert has pointed out that, “if one wants a justification for everything,
then one must also require a justification for those findings and premises which one
has used to derive and justify the respective reasoning – or the relevant statements.”2

With regards to the trilemma there seem to be only three alternatives or attempts
of resolutions: either (i) an infinite regress in which each proof requires a further
proof, ad infinitum; or (ii) circularity in which theory and proof support each other;
very much like the ouroboros symbol, serpent or dragon eating its own tail; or (iii) a

1Interesting though that if, instead of on a horse, Münchhausen would have ridden a loaded cannon,
then by firing the cannon ball towards the ground might have helped.
2German original [10, Chap.2, p. 15]: “Wenn man für alles eine Begründung verlangt, muss man
auch für die Erkenntnisse, auf die man jeweils die zu begründende Auffassung – bzw. die betreffende
Aussagen-Menge – zurück geführt hat, wieder eine Begründung verlangen”.
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26 5 On What Is Entirely Hopeless

termination of justification at an arbitrary point of settlement by the introduction of
axioms.

When comparedwith the original goal of omni-justification of everything all three
alternatives appear not very satisfactory. This is well in line with ancient scepticism,
and Albert’s three “resolutions” of the Münchhausen trilemma can be related to the
tropes or Five Modes enumerated by Sextus Empiricus, in his Outlines of Pyrrhon-
ism. These are in turn attributed to Diogenes Laertius and ultimately to Agrippa.
These tropes are [548] (i) dissent and disagreement of conflicting arguments, such
that conflict cannot be decided; as well as uncertainty about arguments; (ii) infinite
regress; (iii) mean and relation dependence, relativity of arguments; (iv) assumption
about the truth of axioms without providing argument; as well as (v) circularity -
The truth asserted involves a vicious circle.

If one pursues the axiomatic approach – by holding to some (at least preliminary)
theory of everything, thenwhat can andwhat cannot be expressed and formally proven
is (means) relatives to the assumptions and axioms and derivation rules made. Once
a formal framework is fixed, this framework constitutes a universe of expressions. If
such a framework is “strong” or “sophisticated enough” it includes self-expressibility
by its capacity to encode the terms occurring within it, and by substituting and apply-
ing these terms into functionswhich themselves are encodable.While there is nothing
wrong with self-expressibility – actually it has been argued in Chap.2 that physics is
bound to reflexivity – some conceivable expressions are paradoxical, and need to be
excluded for “security reasons;” in particular, to avoid contradictions. This results in
provable limits to self-expressibility; limits which are even quantifiable [125, 131].

This is very different from revelations about numbers, such as Srinivasa Ramanu-
jan’s inspirations. In such cases, no bounds to expressibility can be given. Indeed,
expressibility by intuition may be unlimited. It cannot be ruled out that some agents,
such as human minds, have a more direct access to truth than, say, an automated
proof system.

But trusting such claims is very problematic. The claims are not correct with
respect to any axioms and derivation rules which one might have agreed upon as
being valid, and therefore cannot be checked and found (in-)correct relative to the
latter.

Of course, one might say, that ultimately there has to be trust involved. Because
also in the traditional, axiomatic ways, the axioms and derivation rules have to be
trusted. (Ramsey theory might be an exception.)

http://dx.doi.org/10.1007/978-3-319-70815-7_2
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Chapter 6
Forecasting and Unpredictability

While – depending on one’s subjective optimism or pessimism often, sometimes
or rarely – it is possible to predict the future, certain forecasting tasks, in particular,
when it comes to self-reference, are provable unattainable, and will remain so forever.
Why? Because some forecasting tasks would result in the following situation, frugally
explained by Aaronson [2] “Turing imagined that there was a special machine that
could solve the Halting Problem. Then he showed how we could have this machine
analyse itself, in such a way that it has to halt if it runs forever, and run forever
if it halts. Like a hound that finally catches its tail and devours itself, the mythical
machine vanishes in a fury of contradiction. (That’s the sort of thing you don’t say
in a research paper.)”

6.1 Reduction from Logical Incompleteness

Given two problems A and B. Let us say that if “a reduction from problem A (in)to
problem B” exists (or “problem A is reducible to problem B”) then the solution to
problem B can be used to solve problem A. Indeed, one may think of B as some
“oracle” or “subroutine” which can be used to solve A. Thereby, reduction from A
into B is an algorithm for transforming problem A into another problem B. Therefore,
when problem A is reducible to problem B, then a solution of problem A cannot be
harder than a solution to problem B, since a solution to B provides a solution to A.
Hence, a reduction from problem A to another problem B can be used to show that
problem B is at least as difficult as problem A.

More specifically, reduction (aka “algorithmic translation”) from some unsolvable
problem A (in particular, the halting problem) to problem B means the demonstration
that the problem B in question is unsolvable by showing that the unsolvable problem
A (in particular, the halting problem) can be reduced to it: that is, by showing that
if we could compute a solution to problem B in question, we could use this solution
to get a computable method for solving the unsolvable problem A (in particular, the
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halting problem) [435, Sect. 2.1, p. 34]. But there cannot exist such a computable
method of solving A. Therefore problem B must be unsolvable as well.

In what follows we shall follow previous reviews of that subject [499, 516]; mostly
in the context of classical mechanics. Thereby the standard method is a reduction from
some form of recursion theoretic incompleteness (in particular, the halting problem)
into some physical entity or decision problem. Here the term reduction also refers to
the method to link physical undecidability by reducing it to logical undecidability.
Logical undecidability, in turn, can be related to ancient antinomies – for instance
“the liar:” already the Bible’s Epistle to Titus 1:12, states that “one of Crete’s own
prophets has said it: ‘Cretans are always liars, evil brutes, lazy gluttons.’ He has
surely told the truth.” – as well as antinomies plaguing Cantor’s naive set theory.

A typical example for this strategy is the embedding of a Turing machine, or
any type of computer capable of universal computation, into a physical system. As
a consequence, the physical system inherits any type of unsolvability derivable for
universal computers such as the unsolvability of the halting problem: because the
computer or recursive agent is embedded within that physical system, so are its
behavioural patterns.

References [35, 119–121, 154–156, 197, 284, 302, 372, 497, 499, 573, 574].
contain concrete examples. The author used a similar reduction technique in the
context of a universal ballistic computational model to argue that the n-body prob-
lem [171, 413, 563] may perform in an undecidable manner; that is, some observables
may not be computable. Consequently, the associated series solutions [496, 560, 561]
might not have computable rates of convergence; just like Chaitin’s Ω [108, 129,
136], the halting probability for prefix-free algorithms on universal computers [109,
111].

Of course, at some point this method or metaphor becomes problematic, as uni-
versal computation requires the arbitrary allocation of time and – depending of the
computational model – computational and/or memory space; that is, a potentially
infinite totality. This is never achievable in realistic physical situations [79–81, 232,
233].

6.2 Determinism Does Not Imply Predictability

One immediate consequence of reduction is the fact that, at least for sufficiently
complex systems allowing the implementation of Peano arithmetic or universal com-
putation, determinism does not imply predictability [497, 499]. This may sound
counterintuitive at first but is quite easy to understand in terms of the behaviour, the
temporal evolution or phenomenology of a device or subsystem capable of universal
computation.

Let us, for the sake of a more explicit (but not formal and in a rather algorithmic
way) demonstration what could happen, consider a supposedly and hypothetically
universal predictor. We shall, by a proof by contradiction show, that the assumption of
such a universal predictor (and some “innocent” side constructions) yields a complete
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contradiction. Therefore, if we require consistency, our only consolation – or rather
our sole option – is to abandon the assumption of the existence of a universal predictor.

6.2.1 Unsolvability of the Halting Problem

The scheme of the proof by contradiction is as follows: the existence of a hypothetical
halting algorithm capable of solving universal prediction will be assumed. More
specifically, it will be (wrongly) assumed that a “universal predictor” exists which
can forecast whether or not any particular program halts on any particular input. This
could, for instance, be a subprogram of some suspicious super-duper macro library
that takes the code of an arbitrary program as input and outputs 1 or 0, depending
on whether or not the respective program halts. One may also think of it as a sort
of oracle or black box analysing an arbitrary program in terms of its symbolic code
and outputting one of two symbolic states, say, 1 or 0, referring to termination or
nontermination of the input program, respectively.

On the basis of this hypothetical halting algorithm one constructs another diag-
onalization program as follows: on receiving some arbitrary input program code
(including its input code) as input, the diagonalization program consults the hypo-
thetical halting algorithm to find out whether or not this input program halts. Upon
receiving the answer, it does the exact opposite consecutively: If the hypothetical
halting algorithm decides that the input program halts, the diagonalization program
does not halt (it may do so easily by entering an infinite loop). Alternatively, if
the hypothetical halting algorithm decides that the input program does not halt, the
diagonalization program will halt immediately.

The diagonalization program can be forced to execute a paradoxical task by receiv-
ing its own program code as input. This is so because, by considering the diagonaliza-
tion program, the hypothetical halting algorithm steers the diagonalization program
into halting if it discovers that it does not halt; conversely, the hypothetical halting
algorithm steers the diagonalization program into not halting if it discovers that it
halts.

The contradiction obtained in applying the diagonalization program to its own
code proves that this program and, in particular, the hypothetical halting algorithm
as the single and foremost nontrivial step in the execution, cannot exist. A slightly
revised form of the proof using quantum diagonalization operators holds for quantum
diagonalization [512], as quantum information could be in a fifty-fifty fixed-point
halting state. Procedurally, in the absence of any fixed-point halting state, the afore-
mentioned task might turn into a nonterminating alteration of oscillations between
halting and nonhalting states [303].
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6.2.2 Determinism Does Not Imply Predictability

A very general result about the incomputability of nontrivial functional properties is
Rice’s theorem (Cf. the Appendix Sect. A.5 on p. 174) stating that, given an algorithm,
all functional properties (that is, some “nontrivial” input/output behavior which nei-
ther is true for every program, nor true for no program – that is, some programs show
this behaviour, and others don’t) of that algorithm are undecidable. Stated differently,
given a program, there is no general algorithm predicting or determining whether the
function it computes has or has not some property (which some programs have, and
others do not have).

One proof is by reduction to the halting problem; that is, a proof by contradic-
tion: we construct a decision problem about functional properties by overlaying it
with a primary halting problem. A the primary halting problem will in general be
undecidable, so will be the compounded decision problem about function properties.

Suppose (wrongly) that there exists a program predicting or determining whether
or not, for any given program, the function it computes has or has not some particular
property (which some programs have, and others do not have).

Then we construct another program which first solves the halting program from
some other arbitrary but definite program, then clears the memory, and after that,
in a third step, runs a program which has the property which we are interested in.
Now we apply this new program to the predictor. Suppose the other arbitrary but
definite program terminates, then the predictor could in principle predict that the
new program satisfies the property.

Alas, if the other arbitrary but definite program does not halt (but for instance goes
into an infinite loop), then our predictor will never be able to execute the two final
steps of the new program – that is, clearing the memory and running the program
with the property we are interested in. Therefore, predicting the functional property
for the new three-step program constructed amounts to deciding the halting problem
for the other arbitrary but definite program. This task is in general undecidable for
arbitrary other but definite programs.

6.3 Quantitative Estimates in Terms of the Busy Beaver
Function

More quantitatively one can interpret this unpredictability in terms of the busy beaver
function [71, 125, 168, 426], also discussed in Appendix A.7, which can be defined
as a sort of “worst case scenario” as follows: suppose one considers all programs (on
a particular computer) up to length (in terms of the number of symbols) n. What is the
largest number producible by such a program before halting? (Note that non-halting
programs, possibly producing an infinite number, e.g., by a non-terminating loop, do
not apply.) This number may be called the busy beaver function of n.
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Consider a related question: what is the upper bound of running time – or, alter-
natively, recurrence time – of a program of length n bits before terminating or,
alternatively, recurring? An answer to this question will explain just how long we
have to wait for the most time-consuming program of length n bits to halt. That, of
course, is a worst-case scenario. Many programs of length n bits will have halted
long before the maximal halting time. We mention without proof [125, 128] that this
bound can be represented by the busy beaver function.

Knowledge of the maximal halting time would solve the halting problem quan-
titatively because if the maximal halting time were known and bounded by any
computable function of the program size of n bits, one would have to wait just a little
longer than the maximal halting time to make sure that every program of length n –
also this particular program, if it is destined for termination – has terminated. Other-
wise, the program would run forever. Hence, because of the recursive unsolvability
of the halting problem the maximal halting time cannot be a computable function.
Indeed, for large values of n, the maximal halting time “explodes in a way which is
unbounded by computability;” thereby growing faster than any computable function
of n (such as the Ackermann function).

By reduction, upper bounds for the recurrence of any kind of physical behaviour
can be obtained; for deterministic systems representable by n bits, the maximal
recurrence time grows faster than any computable number of n. This bound from
below for possible behaviours may be interpreted quite generally as a measure of the
impossibility to predict and forecast such behaviours by algorithmic means.
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Chapter 7
Induction by Rule Inference

Induction is the inference of general rules “causing” and “generating” (in an algo-
rithmic interpretation) physical behaviours from these very behaviours (without any
extra assumptions) alone. Thus induction is “bottom up:” given the phenomena and
how observers perceive them operationally, these observers somehow obtain the
causes and rules which supposedly underlie these phenomena. Thereby we shall
restrict ourselves to algorithmic methods of induction; We shall not consider others,
such as intuition, guesses or oracles, or means other than intrinsic.

Again it can be shown that for any deterministic system strong enough to support
Peano arithmetic or universal computation, the induction problem for general algo-
rithms (laws) or behaviours (phenomenology) is provable unsolvable. Induction is
thereby reduced to the unsolvability of the rule inference problem [8, 14, 64, 246,
336]. This is the task to identify a rule or law reproducing the behaviour of a deter-
ministic system by observing its input-output performance by purely algorithmic
means (not by oracles or intuition).

Informally, the algorithmic idea of the proof is to take any sufficiently powerful
rule or method of induction and, by using it, to define some functional behaviour
which is not identified by it. This amounts to a sort of diagonalization; that is, the
construction of an algorithm which (passively) fakes the guesser by simulating some
particular function until the guesser pretends to be able to guess the function correctly.
In a second, diagonalization step, the faking algorithm then switches to a different
functional behaviour to invalidate the guesser’s guess.

One can also relate this result to the recursive unsolvability of the halting problem,
or in turn interpret it quantitatively in terms of the busy beaver function: there is no
recursive bound on the time the guesser has to wait to make sure that the guess is
correct. More generally, one could relate induction also to the problem of functional
equivalence, which is provable undecidable [435, Sect. 2.1, pp. 33,34]: do two or
more algorithms compute the same function? Two algorithms ϕ and ψ are equivalent
if and only if they share a common domain (and image), and for any argument x
of the domain, they are conditionally equal ϕ(x) = ψ(x); that is, both sides are
meaningful at the same time and, if meaningful, they assume the same value.
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Chapter 8
Other Types of Recursion Theoretic
Unknowables

The following theorems of recursive analysis [7, 564] have some implications for
theoretical physics.

• Specker’s theorem of recursive analysis: There exist recursive monotone bounded
sequences of rational numbers whose limit is no computable number [477].
A concrete example of such a number is Chaitin’s Omega number [103, 109, 129],
also discussed in Appendix A.6, the halting probability for a computer (using
prefix-free code), which can be defined by a sequence of rational numbers with no
computable rate of convergence.

• Specker’s other theorem of recursive analysis: There exist a recursive real function
which has its maximum in the unit interval at no recursive real number [478]. This
has implications for the principle of least action [320].

• Wang’s theorem of recursive analysis: The predicate “there exists a real number r
such that whether or not G(r) = 0” is recursively undecidable for G(x) in a class
of functions which involves polynomials and the sine function [559]. This, again,
has some bearing on the principle of least action.

• Uncomputable solutions of differential equations: There exist uncomputable solu-
tions of the wave equations for computable initial values [78, 418].

• Ubiquity and pervasiveness of undecidability: On the basis of theorems of recursive
analysis [433, 442] many questions in dynamical systems theory are provable
undecidable [107, 157, 280, 487].
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Chapter 9
What if There Are No Laws? Emergence
of Laws

The following speculations resemble Darwin’s and also Turing’s “inversion of rea-
son” – that is, “competence without comprehension” – forcefully put forward by
the atheistic philosopher Daniel Dennett in his phrase “delere Auctorem Rerum Ut
Universum Infinitum Noscas; aka DARW(=UU)IN: destroy the author of things in
order to know the universe”.

9.1 Mythological Roots

The idea that the universe is lawless and grounded inChaos, or a structureless void can
be found inmanymythologies and cosmogonies. For instance, inChinese cosmogony
hundun is identified with primordial chaos.

In Greek mythology and cosmogony, c£oj – chaos (or chasm, “gap, yawn-
ing” [531, p. 3]) has been considered the primordial “nonform” of the universe. In
particular, Hesiod’s Theogonia – Theogony “(not necessarily Hesiod’s title) offers a
brief account of the origins of the cosmos as preface to the extolling of Zeus’ rule”,
thereby contrasting the “lawful” organization of the world of the gods “with the
absence of such order in previous times” [531, p. 1]: “From the beginning, tell me
which of these was first to come. Chasm it was, in truth, who was the very first” [277,
115–116]; or, in a different translation, “In truth, first of all Chasm came to be” [276,
115–116]. The latter author remarks in Footnote 7: “Usually [[Chasm is]] translated
as “Chaos”; but that suggests to us, misleadingly, a jumble of disordered matter,
whereas Hesiod’s term indicates instead a gap or opening.”

Two centuries after Hesiod, Plato’s Tomaeus stated that the god-demiurge “found
everything visible in a state of turmoil, moving in a discordant and chaotic manner
(prior to the intervention of the demiurge, there is chaos), so he led it from chaos to
order, which he regarded as in all ways better” [412, p. 18,127; 30a]

Also the Bible’s Genesis [1.2] states that, after its creation by God “the earth was
without form and void.”

© The Author(s) 2018
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9.2 Physical Indeterminism in Vienna at the Dawn
of Quantum Mechanics

Probably the first researcher speculating that all physical laws are not exact but
emerge from, and are subject to, microphysical indeterminism, was Exner in fin de
siècle Vienna: in his inaugural lecture “On Laws in Science and Humanities” as
rector of the University of Vienna, held on October 15th, 1908, Exner suggests [209,
p. 18] that there are no exact laws of nature; or, as Hanle puts it [262], “laws do
not exist in nature but are formulated by man.” In Exner’s own words [209], “. . . in
the region of the small, in time as in space, the physical laws are probably invalid
. . . Therefore we have to perceive all so-called exact laws as probabilistic which
are not valid with absolute certainty; but the more individual processes are involved
the higher the certainty. All physical laws can be traced back to random processes
on the molecular level, and from them the result follows according to the laws of
probability theory. . .” 1

Indeed,Exner speculated, it couldwell be that the statistical laws donot necessitate
nonprobabilistic, deterministic laws on the microlevel – it could well be that, in
particular, on themicroscopic level for individual particles, irreducible randomevents
occur, giving rise to statistical macrolevel descriptions. Exner contemplates that this
might be true even for classical physics such as collisions [209]. He also explicitly
mentiones Boltzmann’s methods of statistical physics.

Egon von Schweidler, a colleague of Exner at theUniversity ofVienna,might have
been the first to interpret single radioactive decays as irreducibly random [459] (cf.
Chap. 15, p. 129). And Schrödinger, the “scientific apprentice” of both Schweidler
and Exner, later in his inaugural lecture in Zürich (Antrittsrede an der Universität
Zürich, 9. Dezember 1922 [451]; English translation in [454, Chap. VI, pp. 107–
118]), referred toExner’s indeterminism. So, essentially, bothExner’s 1909 inaugural
address asRektorof theUniversity ofVienna, aswell as Schrödinger’s 1922 inaugural
address as chair professor for theoretical physics at the University of Zürich suggest
the following: it is at least possible, if not preferable, to assume that all physical
laws, classical and quantum alike, are emergent and correct only statistically and for
large groups of outcomes, and at the microlevel are grounded in irreducible random
individual events. As far as I know, these inaugural lectures are in German only
and unavailable in their entirety in English; for excerpts and reviews see Refs. [262,
490–492].

1German original [209] “. . . im kleinen, der Zeit wie dem Raume nach, gelten die physikalischen
Gesetze voraussichtlich nicht . . . So müssen wir also alle sogenannten exakten Gesetze nur als
Durchschnittsgesetze auffassen die nicht mit absoluter Sicherheit gelten, wohl aber mit um so
größerer Wahrscheinlichkeit aus je mehr Einzelvorgängen sie sich ergeben. Alle physikalischen
Gesetze gehen zurück auf molekulare Vorgänge zufälliger Natur und aus ihnen folgt das Resultat
nach den Gesetzen der Wahrscheinlichkeitsrechnung. . .’.

http://dx.doi.org/10.1007/978-3-319-70815-7_15
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9.3 Contemporary Representations

Let us, for the sake of exposing an extreme position, contemplate on an infinite
universe consisting of random bits – that is, these collection of bits are not only
“lawless” in the sense that there does not exist any algorithm generating them, but
they are, in a strictly formalway [103, 133, 355], also algorithmically incompressible.
That is, its behaviour cannot be “compressed” by any algorithm or rule. One model
of such a universe would be a single random real. We assume that the algorithmic
incompressibility of encoded microphysical structures might be a quite appropriate
formalization of primordial chaos.

There are two ways how pseudo-lawfulness might be “revealed” to intrinsic
observers:

(i) Lawful substructures: It might be the case that these observers might have only
restricted operational access to the entire random string, and merely perceive an
orderly partial sequence (string) – that is, they accidentally live in a substructure
of the random real which appears to be algorithmically compressible. Any such
compression might be interpreted as a “law” governing this particular section of
the universe.
Calude, Meyerstein and Salomaa discuss universes which are lawless [106, 114]
and mention the possibility that we might be riding on a huge but finite segment
of a random string which, to its inhabitants, appears to be lawful: “As our direct
information refers to finite experiments, it is not out of question to discover local
rules, functioning on large, but finite scales, even if the global behaviour of the
process is truly random” [106, p. 1077].
These considerations are based on the finding that, “almost all real numbers,
when expressed in any base, contain every possible digit or possible string of
digits” [103, Theorem 6.1, p. 148] – even entire deterministic universes. There
appear “spurious correlations” in the following sense: “very large databases
have to contain arbitrary correlations. These correlations appear only due to
the size, not the nature, of data” [113].
Yanofsky [581] has discussed related scenarios, and has heuristically investi-
gated the “extracted order that can be found in the chaos” by considering large
matrices and finding patterns therein: Suppose, instead of a matrix, a long string
(one might say a 1 × n matrix) whose entries are filled randomly and inde-
pendently with decimal digits. The expected number of times any particular
substring of m digits, say “123 . . .m,” occurs within this larger string of length
n is (n − m + 1)(1/10)m .

(ii) Emergence: The laws of naturemight actually be “emergent” in aRamsey-theory
type way. Because just as “one cannot not communicate” [562, Sect. 2.24, p. 51]
Ramsey theory [248, 327, 476] reveals that there exist properties and correlations
for any kind of data, which do not depend on the way these date are generated or
structured. This would also (but is not limited to) include c£oj; that is, universes
which are not “lawful” and not generated by intent; and consisting of data which
cannot be algorithmically compressed. Such inevitable correlations might be
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“interpreted” as “laws” in any data: any sufficiently large structure inevitably
contains orderly substructures which can be conjectured to be “lawful” – just as
the Elders looked up into the skies and “found” animal constellations there [247].
Unlike the lawful substructures scenario, emergence does not presume local
non-typicality.

9.4 Provable Impossibility to Prove (In)Determinism

Every absolute claim of both irreducible determinism and indeterminism remains
speculative and metaphysical. Because, due to the recursive undecidability of induc-
tion (the rule inference), one can never be sure if a phenomenology identified as
deterministic – with a particular law or “theory of everything” [34] – “switches its
course” and behaves differently, thereby disproving such claims. This is ultimately
due to the fact that no recursive upper (algorithmic space/memory and runtime)
bound exists for such an assertion.

Conversely, any claim of absolute, irreducible indeterminism falls short of a proof
that no laws exist relative to the phenomenology; for various reasons. Suppose the
physical phenomena are coded into bit strings; then these bit strings are necessarily
finite (there is no infinite operational precision). For finite bit strings always laws
exist – think of a simple enumeration. One may also argue that, due to reduction
from the halting problem, it cannot be guaranteed that no algorithmic compression
exists – in general this bound will also be proportional to the worst-case scenario,
which is a busy beaver type behaviour [128] – and thus nonrecursive in the length
of the bit string. And finally, and also connected with worst-case space/memory and
runtime – not all laws can in principle be enumerated (because there exist a potential
infinity of them); and those few analized cannot be recursively asserted to not yield
that particular bit string encoding the aforementioned phenomenology.

9.5 Potential Misperceptions by Over-interpretation

Square-integrable functions can be approximated by a variety of rather different com-
plete systems of orthogonal functions [18, Sect. 10.4, p. 649], such as, for instance,
trigonometric functions, (Legendre) polynomials, or, more generally, due to the spec-
tral theorem the system of eigenfunctions of certain normal operators. Are we thus
justified to infer that such a particular function, because it can be written in these
various forms, is actually “composed of,” say, vibrations and oscillations in the case
of Fourier analysis, or, alternatively, polynomials, or any other such complete set
of orthogonal functions? At first sight it might be tempting to assume just that. But
a second thought reveals that these choices of functional sets (and thus of normal
operators) are purely conventional. They might, from the practical point of view, be



9.5 Potential Misperceptions by Over-interpretation 43

Fig. 9.1 Ironic example of
an over-interpretation of an
image

convenient or suitable fapp, but they cannot justify any “deep” truth or ontology.
They are just particular formal representations of a functional entity.

As has been noted already in the preface, in order to cope with subjective projec-
tions of the mind, as well as with wishful thinking, Freud advised analysts to adopt a
contemplative strategy of evenly-suspended attention [224, 225]; and, in particular,
to be aware of the dangers caused by “. . . the temptation of projecting outwards some
of the peculiarities of his own personality, which he has dimly perceived, into the field
of science, as a theory having universal validity; he will bring the psycho-analytic
method into discredit, and lead the inexperienced astray.” [224]2 And the late Jaynes
warns and disapproves of the Mind Projection Fallacy [290, 291], pointing out that
“we are all under an ego-driven temptation to project our private thoughts out onto
the real world, by supposing that the creations of one’s own imagination are real
properties of Nature, or that one’s own ignorance signifies some kind of indecision
on the part of Nature.”

For a recent neurophysiological finding corroborating the possibility to induce
hallucinations by perceptual priors and expectations see Ref. [419].

So, it may not be entirely unreasonable to speculate that our own universe might
be grounded in c£oj – chaos (or chasm, “gap, yawning” [531, p. 3]). Those “laws”
which we purport to “discover” might be spurious reflections of our own minds,
desperately attempting to “make sense” of the phenomena.

One is reminded of Fritz Lang’s remark in Godard’s movie Le mépris (Contempt),
approximately 14min into thatmovie:“Jerry, don’t forget. The gods have not created
man. Man has created gods.” And Schrödinger, in Nature and the Greeks, quotes
fragments of Xenophanes as follows [456, p. 71]: “(Fr. 15) Yes, and if the oxen or
horses or lions had hands and could paint with their hands, and produce works of art
as men do, horses would paint the forms of the gods like horses, and oxen like oxen
and make their bodies in the image of their several kinds. (Fr. 16) The Ethiopians
make their gods black and snubnosed; the Thracians say theirs have blue eyes and
red hair.”

For the sakeof a bolddemonstration take some recent findings inmachine learning.
In particular, consider the interpretation of photographic images by neural networks,
also called deep dreaming. Depending of the class of objects the network has handled
and has been trained to recognize in the past, it “projects” or interprets images
presented to it according to its expectations and (trained) knowledge. Thereby [374],

2German original [225]: “Er wird leicht in die Versuchung geraten, was er in dumpfer Selbst-
wahrnehmung von den Eigentümlichkeiten seiner eigenen Person erkennt, als allgemeingültige
Theorie in die Wissenschaft hinauszuprojizieren, er wird die psychoanalytische Methode in Mis-
skredit bringen und Unerfahrene irreleiten”.
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“even a relatively simple neural network can be used to over-interpret an image, just
like as children we enjoyed watching clouds and interpreting the random shapes.”
An ironic and less sophisticated example is graphically depicted in Fig. 9.1.
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Quantum Unknowns



Chapter 10
“Shut Up and Calculate”

One of the biggest dangers in presenting quantum unknowns might be sophism;
a wasteful exercise in fruitless scholasticism and mysticism [589]; on a par with
magic [588, p. 631]. Thereby the current quantum mechanical formalism is presented
as incomprehensible [211, p. 129] and, as Jaynes put it, as [291], “a peculiar mixture
describing in part realities of Nature, in part incomplete human information about
Nature – all scrambled up by Heisenberg and Bohr into an omelette that nobody
has seen how to unscramble.” Even Einstein conceded to Schrödinger, “. . . the main
point was, so to speak, buried by the erudition.”1 – and that was about his own
co-authored “EPR”–paper [196] which he did not write, and was unhappy with the
way it turned out [285, p. 175]!

What is even more dicomforting, in this author’s opinion, is the reaction: whereas
quantum sophism presents the theory as a sort of deep “hocus pocus” [522], there
is an alternative perception of quantum mechanics as a sort of shallow “nothing-
burger;” thereby disallowing or at least discouraging semantical questions about the
meaning, as well as about the epistemology and ontology of the quantum formalism.
In this way quantum theory is reduced to an almost trivial execution of functional
analysis.

The latter approach has a long tradition. Already in 1989 Mermin stated [362, 363]
“If I were forced to sum up in one sentence what the Copenhagen interpretation says
to me, it would be ‘Shut up and calculate!’ ” Well in line with this witticism are articles
entitled “Quantum theory needs no ‘Interpretation’ [228],” or “Interpretations of
quantum theory: A map of madness [93],” or assurances that “Quantum theory is a
well-defined local theory with a clear interpretation. No “measurement problem”
or any other foundational matters are waiting to be settled [201].” Dirac suggested
“not be bothered with them too much” [175].

1German original [550, p. 537]: “. . . die Hauptsache ist sozusagen durch Gelehrsamkeit
verschüttet.”

© The Author(s) 2018
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Indeed, already Sommerfeld had warned his students not to get into these issues,
and Feynman [211, p. 129] predicted the “perpetual torment that results from [[the
question]], ‘But how can it be like that?’ which is a reflection of uncontrolled but
utterly vain desire to see [[quantum mechanics]] in terms of an analogy with some-
thing familiar.” Therefore he advised his audience, “Do not keep saying to yourself,
if you can possibly avoid it, ‘But how can it be like that?’ because you will get ‘down
the drain’, into a blind alley from which nobody has yet escaped.”

But heresy has continued. Clauser [of the Clauser–Horne–Shimony–Holt (CHSH)
inequalities [145]], in a noteworthy paper [144], pointed out the dogmatism of “evan-
gelical theoreticians . . . their ecumenical leadership, and especially given Bohr’s
strong leadership, the net legacy of their arguments is that the overwhelming majority
of the physics community accepted Bohr’s “Copenhagen” interpretation as gospel,
and totally rejected Einstein’s viewpoint.” At some point Clauser got thrown out of
the office by the impatient Feynman (who often liked to market himself as “cool”).
“A very powerful . . . stigma began to develop within the physics community towards
anyone who sacrilegiously was critical of quantum theory’s fundamentals. . . . The
net impact of this stigma was that any physicist who openly criticized or even seri-
ously questioned these foundations (or predictions) was immediately branded as a
‘quack.’ ” Clauser continues by noticing, “To be sure, there remained alive a minor-
ity of the theory’s founders (notably Einstein, Schrödinger, and de Broglie) who
were still critical of the theory’s foundations. These men were obviously not quacks.
Indeed, they all had Nobel Prizes! Instead, gossip among physicists branded these
men ‘senile.’ ”

As time passed by, another, more optimistic phase of the perception of quantum
foundations followed, which, however, might not have sufficiently and critically
reflected the previous evangelical theoreticians’ orthodoxy. On the contrary, quantum
mechanics has been marketed to the public and to policy makers alike as a hocus-
pocus type capacity [522].

This author believes [504] that interpretation is to the formalism what a scaffolding
in architecture and building construction is to the completed building. Very often the
scaffolding has to be erected because it is an indispensable part of the building
process. Once the completed building is in place, the scaffolding is torn down and
the opus stands in its own full glory. No need for auxiliary scaffold any more. But
beware of those technicians who claim to be able to erect skyscrapers without any
of those poles and planks!

In addition, when it comes to claims of applicability of the formalism, and its
ontological commitments, the suppression of semantic content in favour of mere
syntax makes us vulnerable: in many ways the formalism could be extended to
domains in which it cannot be applied safely and properly. Thereby, the resulting
certifications, alleged capacities and predictions could be wrong. Hence, if it comes to
utilize the formalism, interpretation serves not only as scaffolding, but also provides
guiding principles and precautionary methods of evaluation and application.
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Chapter 11
Evolution by Permutation

In what follows a very brief account of reversible evolution and, in particular,
reversible computation by permutation will be presented. We shall follow Mermin’s
account [368] (also available as his Lecture Notes on Quantum Computation [367])
and introduce reversible computation in terms of vector spaces: Thereby the com-
putational states, and the state evolution are represented as elements of Cartesian
standard bases, and permutation matrices acting on these base vectors, respectively.

11.1 Representation Entities by Vectors and Matrices

Let us repeat and rehearse some conventions involving the representation and creation
of state related entities.

A ket vector |x〉 can be represented by a column vector, that is, by vertically
arranged tuples of scalars, or, equivalently, as n × 1 matrices; that is,

|x〉 ≡ (
x1, x2, . . . , xn

)ᵀ =

⎛

⎜⎜
⎜
⎝

x1

x2
...
xn

⎞

⎟⎟
⎟
⎠
. (11.1)

Their linear span is a one-dimensional subspace.
A bra vector 〈x| from the dual space can be represented by a row vector, that is,

by horizontally arranged tuples of scalars, or, equivalently, as 1 × n matrices; that is,

〈x| = (|x〉)† ≡ (
x1, x2, . . . , xn

)
. (11.2)
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Their linear spans

M = span(|x〉) = {|y〉 | |y〉 = λ|x〉, |x〉 ∈ V,λ ∈ R or C} ,
span(〈x|) = {〈y| | 〈y| = λ〈x|, 〈x| ∈ V∗,λ ∈ R or C

}
(11.3)

are one-dimensional subspaces of the base space V and the dual space V∗, respec-
tively.

If |x〉 is a unit vector, the associated orthogonal projection Ex of V onto M can
be written as the dyadic product, or tensor product, or outer product

Ex = |x〉〈x| ≡

⎛

⎜⎜⎜
⎝

x1

x2
...
xn

⎞

⎟⎟⎟
⎠

(
x1, x2, . . . , xn

)

=

⎛

⎜⎜⎜
⎝

x1
(
x1, x2, . . . , xn

)

x2
(
x1, x2, . . . , xn

)

...
xn

(
x1, x2, . . . , xn

)

⎞

⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

x1x1 x1x2 · · · x1xn
x2x1 x2x2 · · · x2xn
...

...
...

...
xnx1 xnx2 · · · xnxn

⎞

⎟⎟⎟
⎠

(11.4)

is the projection associated with |x〉.
If the vector x is not normalized, then the associated projection is Ex =

|x〉〈x|/ (〈x|x〉).
The product (state) of two ket vectors |x〉 ≡ (

x1, x2, . . . , xn
)ᵀ

and |y〉 ≡(
y1, y2, . . . , yn

)ᵀ
can, up to normalization, be written as

|x〉|y〉 ≡ |yx〉 ≡

⎛

⎜⎜⎜
⎝

x1

x2
...
xn

⎞

⎟⎟⎟
⎠

⊗

⎛

⎜⎜⎜
⎝

y1

y2
...
yn

⎞

⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

x1

⎛

⎜⎜
⎜
⎝

y1

y2
...
yn

⎞

⎟⎟
⎟
⎠

x2

⎛

⎜⎜
⎜
⎝

y1

y2
...
yn

⎞

⎟⎟
⎟
⎠

...

xn

⎛

⎜⎜
⎜
⎝

y1

y2
...
yn

⎞

⎟⎟
⎟
⎠

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

x1y1

x1y2
...

x1yn
x2y1

x2y2
...

x2yn
...

xn y1

xn y2
...

xn yn

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

. (11.5)
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The product (state) of two bra vectors 〈x| ≡ (
x1, x2, . . . , xn

)
and 〈y| ≡(

y1, y2, . . . , yn
)

can, up to normalization, be written as

〈x|〈y| ≡ 〈yx| ≡ (
x1, x2, . . . , xn

) ⊗ (
y1, y2, . . . , yn

) =
= (

x1
(
y1, y2, . . . , yn

)
, x2

(
y1, y2, . . . , yn

)
, . . . , xn

(
y1, y2, . . . , yn

)) =
= (

x1y1, x1y2, . . . , x1yn, x2y1, x2y2, . . . , x2yn, xn y1, xn y2, . . . , xn yn
)
.

(11.6)

11.2 Reversibility by Permutation

A more restricted universe than a quantized one would be rendered by real finite
dimensional Hilbert spaces R

n , and by the permutations – more precisely, ortho-
normal (orthogonal) transformations; that is, a one-to-one (injective) transformation
of identical (co)domains Rn preserving the scalar product therein. An even greater
restriction comes with a discretization of states as elements of Cartesian standard
bases and the use of permutation matrices.

Recall that a function f (x) = y from a set X to a set Y maps inputs (or arguments)
x from X into outputs (or values) y from Y such that each element of X has a single
and thus unique output. X is called the domain and Y is called the codomain. The
image f (X) of the entire domain X is a subset of the codomain Y .

A function f is one-to-one or injective if different functional outputs originate
from different functional inputs; that is, if “ f (x) = f (y) implies x = y,” which is
logically equivalent to the contrapositive “x �= y implies f (x) �= f (y)” – that is, if
different functional inputs result in different functional outputs.

As a consequence, if f is one-to-one it can be “inverted” (and thus its action
“undone”) by another function f −1 from its image f [X ] into its domain X such that
f −1(y) = x if f (x) = y. Therefore, the functional mapping can be inverted through

x
f	→ y

f −1	→ x ; in particular, f −1( f (x)) = x .
A function f isonto, or surjective if every element y in its codomainY corresponds

to some (not necessarily unique) element x of its domain, such that y = f (x). In
this case, the functional image is the codomain.

A function f is bijective, or a one-to-one correspondence if it is both one-to-one
(injective) and onto (surjective).

A function f is a permutation if it is a one-to-one correspondence (bijective), and
if the domain X is identical with the codomain Y = X .

Usually, the (co)domain is a finite set. The symmetric group S(n) on a finite set of
n elements (or symbols) is the group whose elements are all the permutations of the
n elements, and whose group operation is the composition of such permutations. The
identity is the identity permutation. The permutations are bijective functions from
the set of elements onto itself. The order (number of elements) of S(n) is n!.

Cayley’s theorem [436] states that every group G can be imbedded as – equiva-
lently, is isomorphic to – a subgroup of the symmetric group; that is, it is isomorphic
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to some permutation group. In particular, every finite group G of order n can be
imbedded as – equivalently, is isomorphic to – a subgroup of the symmetric group
S(n).

Stated pointedly: permutations exhaust the possible structures of (finite) groups.
The study of subgroups of the symmetric groups is no less general than the study of
all groups.

A particular case where the codomain needs not to be finite is quantum mechanics.
In quantum mechanics, the (co)domain will be identified with the Hilbert spaces. We
will restrict our attention to complex finite dimensional Hilbert spaces Cn with the
Euclidean scalar product. In one of the axioms of quantum mechanics the evolution is
identified with some isometric permutation preserving the scalar product (or, equiv-
alently, a mapping of one orthomodular basis into another one); that is, with unitary
transformations U, for which the adjoint (the conjugate transpose) is the inverse; that
is, U∗ = U† = U−1.

We shall now turn our attention to an even more restricted type of universe
whose evolution is based upon permutations [193] on countable or even finite
(co)domains [368]. Thereby we shall identify these (co)domains with very particular
sets of unit vectors in R

n: the Cartesian standard bases; namely all those ket (that
is, column) vectors |x〉 with a single coordinate being one, and all other components
zero.

Suppose further that elements of the set {1, 2, . . . , n} of natural numbers are
identified with the elements of the Cartesian standard basesB = {|e1〉, |e2, . . . , |en〉}
by i ≡ |ei 〉.

The symmetric group S(n) of all permutations of n basis elements of B can then
be represented by the set of all (n × n) permutation matrices carrying only a single
“1” in all rows and columns; all other entries vanish.

11.2.1 Representation as a Sum of Dyadic Products

For the sake of an example, consider the two-dimensional case with n = 2,

1 ≡ |1〉 =
(

1
0

)
, and 2 ≡ |2〉 =

(
0
1

)
. (11.7)

Then there exist only two permutation matrices, interpretable as the identity and the
not matrix, respectively:

I2 = |1〉〈1| + |2〉〈2| =
(

1 0
0 1

)
, and X = |1〉〈2| + |2〉〈1| =

(
0 1
1 0

)
. (11.8)

Note that the way these matrices are constructed follows the scheme of defining
unitary transformations in terms of sums of basis state changes [460]. Indeed, all the
n! permutation matrixes transforming the n basis elements of the Cartesian standard



11.2 Reversibility by Permutation 55

basis B = {|e1〉, |e2, . . . , |en〉} in n dimensions can be constructed by varying the
sums of such basis state changes. More explicitly, consider in Cauchy’s two-line

notation the j th permutation σ j =
(

1 2 . . . n
σ j (1) σ j (2) . . . σ j (n)

)
so that the input i is

mapped into σ j (i), with 1 ≤ i ≤ n; then the j th permutation matrix can be defined
by

P j =
n∑

i=1

|ei 〉〈eσ j (i)| =
n∑

i=1

|eσ j (i)〉〈ei |. (11.9)

11.2.2 No Coherent Superposition and Entanglement

Permutations cannot give rise to coherent superposition and entanglement – the latter
one being just particular, non-factorizable superpositions in the multiple particle con-
text. Syntactically this is due to the fact that, for a finite number of bits, permutation
matrices contain only a single entry in each row and each column.

11.2.3 Universality with Respect to Boolean Functions

The following question arises naturally: is the set of permutations for arbitrary large-
dimensional computationally universal in the sense of Turing; that is: can such a
system of permutations compute all recursively enumerable functions [55, 222, 537]?

The three-bit Fredkin gate is universal with respect to the class of Boolean func-
tions; that is, functions of binary inputs with binary output. Universality here means
that any Boolean function can be constructed by the serial composition Fredki gates.
Its permutation matrix PF = diag

(
1, 1, 1, 1, 1,X, 1

)
is almost diagonal. Thereby

“diag(λ1,λ2, . . . ,λn)” stands for the diagonal matrix with entries λ1,λ2, . . . ,λn in
the main diagonal.

Based on the permutation σF =
(

1 2 3 4 5 6 7 8
1 2 3 4 5 7 6 8

)
this gate can be represented in

terms of the sum decomposition (11.9) by PF = ∑5
i=1 |ei 〉〈ei |+|e6〉〈e7|+|e7〉〈e6|+

|e8〉〈e8|.
Likewise, the three-bit Toffoli gate is universalwith respect to the class of Boolean

functions. Its permutation matrix is PT = diag
(
1, 1, 1, 1, 1, 1,X

)
. Based on the

permutation σT =
(

1 2 3 4 5 6 7 8
1 2 3 4 5 6 8 7

)
this gate can be represented in terms of the

sum decomposition (11.9) by PT = ∑6
i=1 |ei 〉〈ei | + |e7〉〈e8| + |e8〉〈e7|.

Indeed, the Fredkin and the Toffoli gates are equivalent up to permutations; and
so is any quasi-diagonal matrix with one entry in 2 × 2 matrix block form X, and all
other entries 1 in the diagonal.



56 11 Evolution by Permutation

11.2.4 Universal Turing Computability from Boolean
Functions

This author is not aware of any concrete, formal derivation of Turing universality
from universality with respect to Boolean functions. Indeed, how could input-output
circuits encode the kind of substitution and self-reference encountered in recursion
theory [473–475]? One could conjectured that, of one allows an arbitrary sequence
of Boolean functions, then this would entail universal Turing computability [69,
378], but this is still a far cry from coding, say, the Ackermann function in terms of
reversible gates.

11.2.5 d-Ary Information Beyond Bits

While it is true that, at least in principle, Leibniz’s binary atoms of information suffice
for the construction of higher-dimensional entities, it is not entirely unreasonable to
consider 3-ary, 4-ary, and, in general d-ary atoms of information. One conjecture
would be that the set of universal operations with respect to d-ary generalisations
of binary functions – that is, functions f (x1, . . . , xk) ∈ {1, . . . , d} with k d-ary
inputs xi ∈ {1, . . . , d} with a d-ary output – are representable by a set of generalized
Toffoli gates PT ′ = diag

(
1, 1, 1, 1, 1, 1,Pd

)
, where Pd varies over all permutations

of {1, . . . , d}.

11.2.6 Roadmap to Quantum Computing

Quantum computing is about generalized states, which can be in a superposition
of classical states; and about generalized permutations; that is, about bijections in
complex vector spaces. For this it is sufficient to consider classical reversible com-
putation, “augmented” with gates producing coherent superpositions of a classical
bit (such as the Hadamard gate or quantum Fourier transforms) [371, 466].
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Chapter 12
Quantum Mechanics in a Nutshell

12.1 The Quantum Canon

At the moment, there exists a loosely bundled canon of quantum rules subsumed
under the term quantum mechanics or quantum theory. It includes reversible as
well as irreversible processes, and is prima facie inconsistent. As already von Neu-
mann [552, 554] and later Everett [30, 206, 545] noted, there cannot be any irre-
versible measurement process nested in a ubiquitous uniformly reversible evolution
of the quantum state. Both von Neumann and Everett called the former, irreversible,
discontinuous change the “process 1”; and the latter, reversible, continuous, deter-
ministic change the “process 2,” respectively. Stated differently, there cannot exist
any irreversible many-to-one measurement scenario (other than pragmatic fappness)
in a reversible one-to-one environment.

Hence, if one wants to maintain irreversible measurements, then (at least within
the quantum formalism) one is faced with the following dilemma: either quantum
mechanics must be augmented with some irreversible, many-to-one state evolution,
thereby spoiling the ubiquitous, universal reversible one-to-one state evolution; or
the assumption of the co-existence of a ubiquitous, uniform reversible one-to-one
state evolution on the one hand with some irreversible many-to-one “wave function
collapse,” (by another wording, “reduction of the state vector”) throughout measure-
ment on the other hand, yields a complete contradiction.

How is such a situation handled in other areas? Every system of logic which is
self-contradictory (inconsistent) – such that a proposition as well as its negation is
postulated; or can be derived from the postulates – in particular, in a formal axiomatic
system, is detrimental and disastrous. Because by the principle of explosion (Latin:
ex falso quodlibet) any invocation of a statement as well as of its negation yields
every proposition true. This can be motivated by supposing that both “P” as well
as “not P” are true. Then the proposition “P or anything” is true (because at
least “P” is true). Now suppose that also “not P” holds. But then, in order for
“P or anything” to be true, “anything” needs to be true. However, if anything is
derivable, then such a system lacks any descriptive or predictive capacity. In this
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respect it is quite convenient that quantum mechanics does not represent a formal
system in the strict logical sense.

With regards to the persistence and scientific reception of inconsistencies within
theoretical domains one is reminded of Cantorian “naive” set theory [116, 117];
whereby a set, or aggregate, was defined as follows [118, p. 85]: “By an “aggre-
gate” (Menge) we are to understand any collection into a whole (Zusammenfassung
zu einem Ganzen) M of definite and separate objects m of our intuition or our
thought. These objects are called the “elements” of M .” Despite its well known
inconsistencies (e.g., Russell’s paradox, [288] defining a “set of all sets that are not
members of themselves”), it was embraced by researchers of the time with unabated
enthusiasm. Hilbert, for instance, stated that [278] “Wherever there is any hope of
salvage, we will carefully investigate fruitful definitions and deductive methods. We
will nurse them, strengthen them, and make them useful. No one shall drive us out
of the paradise which Cantor has created for us.” Indeed, the different forms of
(un)countable infinities still present a marvel of early “naive” set theory.

Another source of perplexity remains irreversibility in statistical physics [381];
in particular, issues related to the second law of thermodynamics [375] in view of
microphysical irreversibility. As already pointed out in Sect. 1.1, for the second law
of thermodynamics to hold Maxwell advised to avoid [234, p. 422]: “all personal
enquiries [[of Molecules]] which would only get me into trouble.” A recent discus-
sion [84, 158, 380, 431] on the exorcism of Maxwell’s demon [189, 190, 332] is
witness of the ongoing debate.

Many practitioners either tend to look the other way, or take a pragmatic stance
expressed quite voluptuously byHeaviside [272, Sect. 225]:“I suppose all workers in
mathematical physics have noticed how the mathematics seems made for the physics,
the latter suggesting the former, and that practical ways of working arise naturally.
. . . But then the rigorous logic of the matter is not plain! Well, what of that? Shall I
refuse my dinner because I do not fully understand the process of digestion? No, not if
I am satisfied with the result. Now a physicist may in like manner employ unrigorous
processes with satisfaction and usefulness if he, by the application of tests, satisfies
himself of the accuracy of his results. At the same time he may be fully aware of
his want of infallibility, and that his investigations are largely of an experimental
character, and may be repellent to unsympathetically constituted mathematicians
accustomed to a different kind of work.”

12.2 Assumptions of Quantum Mechanics

As suggested by Dirac [173] and explored by von Neumann [552, 554], quantum
mechanics has been formalized in terms of Hilbert spaces.

Many researchers have attempted to at least partially derive this kind of quantum
formalism from other principles, mostly informational (cf., e.g., Refs. [569, 588],
and [239, Part II], to name but a few). Indeed, as Lakatos has pointed out [324], the
contemporary researchers cannot know which ideas will prevail, and will ultimately

http://dx.doi.org/10.1007/978-3-319-70815-7_1
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result in progressive research programs. Therefore it appears prudent to pursue varied
research programs in parallel.

In the following we shall present a very brief, somewhat revisionist, view on
quantum mechanics. It is based on pure quantum states representable as dichotomic
value assignments on, equivalently, a (normalized) system of orthonormal basis vec-
tors, the associated set of projection operators, or the associated set of subspaces
of a Hilbert space. (Fapp a Hilbert space is a vector space with a scalar product.)
Vector spaces are needed for the manipulation of vectors, such as vector additions
and superpositions. (For the rest of this chapter, suppose that we are “riding” a single
vector of a high dimensional Hilbert space, thereby qualifying as “members of the
church of the larger Hilbert space.”)

By the spectral theorem, observables can be represented by the weighted spectral
sums of such pure (mutually orthogonal) quantum states aswell. Any non-degenerate
spectral sum represents a maximal measurement. We may call this, or rather the set
of orthogonal projection operators in the spectral sum, a context.

Quantum complementarity is the feature that two different contexts cannot be
directly measured simultaneously.

Scalar products are needed for defining the relational property of vectors, such
as orthogonality and collinearity. They allow projections of vectors onto arbitrary
non-zero subspaces. Thereby they grant a particular view on the quantum state, as
seen from another quantum state – or, equivalently, the proposition represented by
the respective vector or associated projection operator.

Ultimately, scalar products facilitate the definition of frame functions which can
be interpreted as quantum probabilities. This is necessary because, at least from
dimension three onwards, the tight intertwining (pasting) of such maximal views or
contexts does not allow quantum probabilities to be defined by the convex sum of
two-valued measures. These two-valued measures could, if they existed, be inter-
preted as non-contextual truth assignments. As it turns out, relative to reasonable
side assumptions, any such classical strategy fails, simply because, from dimension
three onwards, such two-valued measures do not exist for more than a single context.

12.3 Representation of States

Suppose we are given a Hilbert space of sufficient dimension. That is, its dimen-
sion coincides with the maximal number of mutually exclusive outcomes of any
experiment we wish to formalize.

It is “reasonable” to define a physical state of an object by the maximal empirical
(information) content in principle accessible to an observer by any sort of operational
means available to this observer. In Dirac’s words [173, pp. 11–12], “A state of a sys-
tem may be defined as an undisturbed motion that is restricted by as many conditions
or data as are theoretically possible without mutual interference or contradiction.
In practice the conditions could be imposed by a suitable preparation of the system,
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consisting perhaps in passing it through various kinds of sorting apparatus, such as
slits and polarimeters, the system being left undisturbed after the preparation.”

Schrödinger, in his Generalbeichte [452, Footnote 1, p. 845] (general confession)
of 1935, pointed out that [539, Sect. 6, p. 328] “Actually [[in truth]]—so they say—
there is intrinsically only awareness, observation, measurement. If through them I
have procured at a given moment the best knowledge of the state of the physical
object that is possibly attainable in accord with natural laws, then I can turn aside
as meaningless any further questioning about the “actual state,” inasmuch as I am
convinced that no further observation can extend my knowledge of it—at least, not
without an equivalent diminution in some other respect (namely by changing the
state, see below).”1

No further justification is given here.
A quantum state is thus identified with a maximal co-measurable (or

co-preparable) entity. This is based on complementarity: not all conceivable quantum
physical properties are co-measurable. (For classicalmodels of complementarity, see,
for instance, Moore’s discrete-valued automaton analogue of the Heisenberg uncer-
tainty principle [373, 446, 499], as well as Wright’s generalized urn model [578],
and partition logics in general [511].)

In the Hilbert space formulation of quantum mechanics a state is thus formalized
by two entities; some structural elements, and a measure on these elements [520]:

(I) equivalently,

(i) an orthonormal basis of Hilbert space;
(ii) a set of mutually orthogonal projection operators corresponding to an

orthonormal basis called context;
(iii) a maximal observable, or maximal operator, or maximal transformation

whose spectral sum contains the set of mutual orthogonal projection opera-
tors from the aforementioned basis;

(iv) a maximal Boolean subalgebra [249, 300, 376, 420] of the quantum logic
also called a block;

(II) as well as a two-valued (0-1) measure (or, used synonymously, valuation, or
truth assignment) on all the aforementioned entities, singling out or selecting
one of them such that this measure is one on exactly one of them, and zero on
all the others.

1German original [452, Sect. 6, p. 823] “Wirklich – so sagt man – sind ja eigentlich nur
Wahrnehmung, Beobachtung, Messung. Habe ich mir durch sie in einem gegebenen Augenblick
die bestmögliche Kenntnis vom Zustande des physikalischen Objekts verschafft, die naturgesetzlich
erlangbar ist, so darf ich jede darüber hinausgehende Frage nach dem “wirklichen Zustand” als
gegenstandslos abweisen, sofern ich überzeugt bin, dass keine weitere Beobachtung meine Kenntnis
davon erweitern kann – wenigstens nicht, ohne sie in anderer Hinsicht um ebensoviel zu schmälern
(nämlich durch Veränderung des Zustandes, s. w. u.)”.
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Another way of formalizing a state would be to single out a particular vector of the
basis referred to earlier – the onewhich is actually “true;” that is, whosemeasurement
(deterministically) indicates that the system is in this state.

However, one cannot “not measure” the accompanying context of a particular
set of orthogonal vectors which, together with the state vector, completes a basis.
One can deny it, or look the other way, but the permutation quantum evolution
presented below presents no way for “blissful ignorance:” any “beam dump” is fapp
irreversible and only fapp formalizable by taking partial traces, whereas in principle
the information about the rest of the context remains intact.

12.4 Representation of Observables

A non-degenerate quantum observable is identified with all properties of a state, less
the two-valued measure, and formalized by

(i) an orthonormal basis of Hilbert space;
(ii) a set of mutually orthogonal projection operators corresponding to an orthonor-

mal basis called context;
(iii) a maximal observable, or maximal operator, or maximal transformation whose

spectral sum contains the set of mutual orthogonal projection operators from
the aforementioned basis;

(iv) a maximal Boolean subalgebra [249, 300, 376, 420] of the quantum logic also
called block.

This correspondence (exmeasure) between a quantumstate and a quantumobserv-
able is reflected in the formalism itself: Anymaximal observable can be decomposed
into a spectral sum,with the orthogonal projection operators forming a corresponding
orthonormal basis, or, synonymously, by a context or a block.

12.5 Dynamical Laws by Isometric State Permutations

The isometric state permutation rule postulates that the quantum state evolves in a
deterministic way by isometric (length preserving) state permutation. [Throughout
this book we shall denote a bijection between the same set (continuum) as permu-
tation.] This can be equivalently understood as a linear transformation preserving
the inner product, or as change of orthonormal bases/contexts/blocks [260, Sect. 74]
(see also [460]). The formalization is in terms of unitary operators.

Suppose that the quantum mechanical (unitary) permutation is ubiquitous and
thus valid universally. Then, stated pointedly, “reversibility rules.”

This assumption is strongly supported by a nesting argument [30, 31] first put
forward by Everett, and later by Wigner [571] (cf. Sect. 1.7 on p. 10). Because it is

http://dx.doi.org/10.1007/978-3-319-70815-7_1
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quite reasonable that any observing agent, when combined with the object this agent
observes (including the cut/interface), should form a system that is quantized again;
thereby implying a time evolution which is governed by isometric state permutation.

12.6 Disallowed Irreversible Processes

With the assumption of uniform validity of state the quantum evolution by isometric
permutativity, many-to-one processes are excluded. In particular, formation of mixed
states frompure states, aswell as irreversiblemeasurements, and the associated “state
reduction” (or “wave function collapse”) contradict the isometric state permutation
rule, and cannot take place in this regime.

12.6.1 Disallowed State Reduction

Usually a “state reduction” occurs during an irreversiblemeasurement. It is associated
with a transition from a state which is in a non-trivial coherent (or, by an equivalent
term, linear) superposition – that is, a linear combination – a multiplicity of more
than one states

∑n>1
i=1 αi |i〉 with normalization

∑n>1
i=1 |αi |2 = ∑n>1

i=1 αiαi = 1 into
a single state |k〉, 1 ≤ k ≤ n with probability |αk |2 = αkαk . No one-to-one process
such as a permutation can produce this n-to-1 transition.

12.6.2 Disallowed Partial Traces

Again any “generation” of a mixed state from pure states by “tracing out” certain
components of the state is disallowed, since this amounts to a loss of information,
and does not correspond to any invertible (reversible) transformation. Conversely,
one could “purify” any mixed state, but this process is nonunique.

12.7 Superposition of States – Quantum Parallelism

Already Dirac referred to the principle of superposition of states [173, pp. 11–12],
“whenever the system is definitely in one state we can consider it as being partly in
each of two or more other states. The original state must be regarded as the result
of a kind of superposition of the two or more new states, in a way that cannot be
conceived on classical ideas.”

The superposition principle can be formalized by linear combinations as fol-
lows: suppose two states, which can be formally represented by orthonormal bases
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B = {|e1〉, |e2, . . . , |en〉} and B′ = {|f1〉, |f2, . . . , |fn〉}. Then each member |ei 〉 of
the first basis can be represented as a linear combination or coherent superposition
or superposition of elements of the second basis by

|ei 〉 =
n∑

j=1

αi j |f j 〉; (12.1)

and vice versa.
For normalization reasons which are motivated by probability interpretations, the

absolute squares of the coefficients αi j must add up to 1; that is,

n∑

j=1

|αi j |2 =
n∑

j=1

αi jαi j = 1. (12.2)

With this normalization, the dyadic (tensor) product of |ei 〉 is always of trace class
one; that is,

Tr(|ei 〉〈ei |) = Tr

⎡

⎣

⎛

⎝
n∑

j=1

αi j |f j 〉
⎞

⎠

(
n∑

k=1

αik〈fk |
)⎤

⎦ =

=
n∑

l=1

〈fl |
⎛

⎝
n∑

j=1

αi j |f j 〉
⎞

⎠

(
n∑

k=1

αik〈fk |
)

|fl〉 =

=
n∑

l, j,k=1

αi jαikδl jδkl =
n∑

l=1

αilαil = 1.

(12.3)

Superpositions of pure states – resulting in a pure state – should not be confused
with mixed states, such as, for instance,

ρ =
n∑

j=1

ρi j |fi 〉〈f j |, (12.4)

which are the linear combination of dyadic (tensor) products |fi 〉〈f j | of pure states
|fi 〉 and |f j 〉 such that Tr(ρ) = 1 and Tr(ρ2) < 1.

12.8 Composition Rules and Entanglement

In classical physics any compound system – the whole – can be composed from its
parts by separation and specification of the parts individually.
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This “factoring” of states of multiple constituent parts into products of individual
single particle states need no longer be possible in quantum mechanics (although it
is not excluded in particular quasi-classical cases): in general, any strategy to obtain
the entire state of the whole system of many particles by considering the states of
the individual particles fails.

This is a consequence of the quantum mechanical possibility to superpose states
of multiple particles; that is, to add together arbitrarily weighted (subject to nor-
malization) products of single particle states to form a new, valid, state. Classically,
these states are “unreachable” by reversible evolutions-by-permutation, but quantum
mechanically it is quite straightforward to create such a superposition through uni-
tary transformations.Arguably themost prominent one is aHadamard transformation
corresponding to a 50:50 beam splitter.

12.8.1 Relation Properties About Versus Individual
Properties of Parts

Probably the first to discuss this quantum feature (in the context of the measurement
process) was von Neumann, stating that, “If I is in the state ϕ(q) and I I in the
state ξ(r), then I + I I is in the state Φ(q, r) = ϕ(q)ξ(r). If on the other hand
I + I I is in a state Φ(q, r) which is not a product ϕ(q)ξ(r), then I and I I are
mixtures and not states, but Φ establishes a one-to-one correspondence between
the possible values of certain quantities in I and in I I . [554, Sect.VI.2, pp. 436–
437] . . . all “probability dependencies” which may exist between the two systems
disappear as the information is reduced to the sole knowledge of . . . the separated
systems I and I I . But if one knows the state of I precisely, as also that of I I ,
“probability questions” do not arise, and then I + I I , too, is precisely known [554,
Sect.VI.2, p. 426]”.2 Unfortunately the translation uses the two English phrases
“probability dependencies” as well as “probability questions” for von Neumann’s
German expression “Wahrscheinlichkeitsabhängigkeit.” Maybe it would be better to
translate these by “probabilistic correlations.”

In a series of German [452] and English [453, 455] papers Schrödinger empha-
sized that [539, Sect. 10, p. 332] “The whole is in a definite state, the parts taken
individually are not.”3

2German original: “Ist I im Zustande ϕ(q) und I I im Zustande ξ(r), so ist I + I I im Zustande
Φ(q, r) = ϕ(q)ξ(r). Ist dagegen I + I I in einem Zustande Φ(q, r), der kein Produkt ϕ(q)ξ(r) ist,
so sind I und I I Gemische, aber Φ stiftet eine ein-eindeutige Zuordnung zwischen den möglichen
Werten gewisser Größen in I und in I I . [554, Sect.VI.2, p. 232] . . . bei alleiniger Kenntnis . . .

der getrennten Systeme I und I I , gehen alle “Wahrscheinlichkeitsabhängigkeiten”, die zwischen
denn beiden Systemen noch bestehen können, verloren. Wenn man aber sowohl den Zustand von I
als auch denjenigen von I I genau kennt, kommen “Wahrscheinlichkeitsabhängigkeiten” nicht in
Frage, und man kennt auch I + I I genau [554, Sect.VI.2, p. 227]”.
3German original [452, Sect. 10, p. 827] “Das Ganze ist in einem bestimmten Zustand, die Teile
für sich genommen nicht.”
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Both von Neumann and Schrödinger thought of this as a sort of a zero-sum
game, very much like complementary observables: due to the scarcity and fixed
amount of information which merely gets permuted during state evolution, one can
either have total knowledge of the individual parts; with zero relational knowledge
of the correlations and relations among the parts; or conversely one can have total
knowledge of the correlation and relations among the parts; but know nothing about
the properties of the individual parts. Stated differently, any kind of mixture between
the two extremes can be realized for an ensemble of multiple particles or parts:

(i) either the properties of the individual parts are totally determined; in this case
the relations and correlations among the parts remain indeterminate,

(ii) or the relations and correlations among the parts are totally determined; but then
the properties of the individual parts remain indeterminate.

For classical particles only the first case can be realized. The latter case is a genuine
quantum mechanical feature.

Everett expressed this by saying that, in general (that is, with the exception of
quasi-classical states) [206], “a constituent subsystem cannot be said to be in any
single well-defined state, independently of the remainder of the composite system.”
The entire state of multiple quanta can be expressed completely in terms of corre-
lations or joint probability distributions [365, 576], or, by another term, relational
properties [587, 588], among observables belonging to the subsystems. As point-
edly stated by Bennett [287] in quantum physics the possibility exists “that you
have a complete knowledge of the whole without knowing the state of any one part.
That a thing can be in a definite state, even though its parts were not. . . . It’s not a
complicated idea but it’s an idea that nobody would ever think of.”

Schrödinger called such states in German verschränkt, and in English entangled.
In the context of multiple particles the formal criterion for entanglement is that
an entangled state of multiple particles (an entangled multipartite state) cannot be
represented as a product of states of single particles.

12.8.2 “Breathing” In and Out of Entanglement
and Individuality

The sort of “zero-sum game” mentioned earlier is complementary with regards to
encoding information into relations-correlations versus individual properties: due to
the scarcity and fixed amount of information which merely gets permuted during
state evolution, one can either have total knowledge of the individual parts; with zero
relational knowledge of the correlations and relations among the parts; or conversely
one canhave total knowledge of the correlation and relations among the parts; but then
one learns nothing about the properties of the individual parts. Stated differently, any
kind of mixture between the following two extremes can be realized for a ensemble
of multiple particles or parts:
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(i) individuality: either the properties of the individual parts are totally determined;
in this case the relations and correlations among the parts remain indeterminate;
in probability theory one may say that the parts are independent [261, Sect. 45]

(ii) entanglement: or the relations and correlations among the parts are totally deter-
mined; but then the properties of the individual parts remain indeterminate.

For classical particles only the first, individual, case can be realized. The latter,
entangled, case is a genuine quantum mechanical feature.

Thereby, interaction entangles any formerly individual parts at the price of los-
ing their individuality, and measurements on individual parts destroys entanglement
and “enforces value-definiteness” of the individual constituent parts. Suppose one
starts out with a factorable case. Then an entangled state is obtained by a unitary
transformation of the factorable state. Its inverse transformation leads back from
the entangled state to the factorable state; through a continuum of non-maximal
entangled intermedium states. This may go back and forth – from individuality to
entanglement and then back to individuality – an arbitrary number of times.

In purely formal terms; that is, on the syntactic level, this can be quite well
understood: a pure state of, say, k particles with n states per particle can, be written
as

n∑

i1,...,ik=1

αi1,...,ik |ψ1,i1〉 . . . |ψk,ik 〉 =
n∑

i1,...,ik=1

αi1,...,ik |ψ1,i1 . . . ψk,ik 〉, (12.5)

and not

n∑

i1,...,ik=1

a1,i1 . . . ak,ik |ψ1,i1〉 . . . |ψk,ik 〉 =
n∑

i1,...,ik=1

a1,i1 . . . ak,ik |ψ1,i1 . . . ψk,ik 〉. (12.6)

In particular, this is only valid if αi1,...,ik = a1,i1 . . . ak,ik .
For the sake of a concrete demonstration [368, Sect. 1.5], consider a general state

in four-dimensional Hilbert space. It can be written as a vector in C
4, which can be

parameterized by

(
α1,α2,α3,α4

)ᵀ
, with α1,α3,α3,α4 ∈ C, (12.7)

and suppose (wrongly) (12.7) that all such states can be written in terms of a tensor
product of two quasi-vectors in C

2

(
a1, a2

)T ⊗(b1, b2
)ᵀ ≡ (

a1b1, a1b2, a2b1, a2b2
)ᵀ

, with a1, a2, b1, b2 ∈ C. (12.8)

A comparison of the coordinates in (12.7) and (12.8) yields

α1 = a1b1, α2 = a1b2, α3 = a2b1, α4 = a2b2. (12.9)



12.8 Composition Rules and Entanglement 69

By taking the quotient of the two first and the two last equations, and by equating
these quotients, one obtains

α1

α2
= b1

b2
= α3

α4
, and thus α1α4 = α2α3. (12.10)

How can we imagine this? As in many cases, states in the Bell basis, and, in
particular, the Bell state, serve as a sort of Rosetta Stone for an understanding of this
quantum feature. The Bell state |Ψ −〉 is a typical example of an entangled state; or,
more generally, states in the Bell basis can be defined and, with |0〉 = (

1, 0
)ᵀ

and
|1〉 = (

0, 1
)ᵀ
, encoded by

|Ψ ∓〉 = 1√
2

(|01〉 ∓ |10〉) =

⎛

⎜
⎜
⎝

0
1

∓1
0

⎞

⎟
⎟
⎠ , |Φ∓〉 = 1√

2
(|00〉 ∓ |11〉) =

⎛

⎜
⎜
⎝

1
0
0

∓1

⎞

⎟
⎟
⎠ .

(12.11)
For instance, in the case of |Ψ −〉 a comparison of coefficient yields

α1 = a1b1 = 0, α2 = a1b2 = 1√
2
,

α3 = a2b1 − 1√
2
, α4 = a2b2 = 0;

(12.12)

and thus entanglement, since

α1α4 = 0 �= α2α3 = 1

2
. (12.13)

This shows that |Ψ −〉 cannot be considered as a two particle product state. Indeed,
the state can only be characterized by considering the relative properties of the two
particles – in the case of |Ψ −〉 they are associated with the statements [588]: “the
quantum numbers (in this case “0” and “1”) of the two particles are different in (at
least) two orthogonal directions.”

The Bell basis symbolizing entanglement and non-individuality can, in an ad hoc
manner, be generated from a non-entangled, individual state symbolized by elements
of the Cartesian standard basis in 4-dimensional real space R4

|e1〉 =

⎛

⎜
⎜
⎝

1
0
0
0

⎞

⎟
⎟
⎠ , |e2〉 =

⎛

⎜
⎜
⎝

0
1
0
0

⎞

⎟
⎟
⎠ , |e3〉 =

⎛

⎜
⎜
⎝

0
0
1
0

⎞

⎟
⎟
⎠ , |e4〉 =

⎛

⎜
⎜
⎝

0
0
0
1

⎞

⎟
⎟
⎠ . (12.14)

by arranging the coordinates (12.11) of the Bell basis as row or column vectors,
thereby forming the respective unitary transformation
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U = |Ψ −〉〈e1| + |Ψ +〉〈e2| + |Φ−〉〈e3| + |Φ+〉〈e4| =

= (|Ψ −〉, |Ψ +〉, |Φ−〉, |Φ+〉) = 1√
2

⎛

⎜
⎜
⎝

0 0 1 1
1 1 0 0

−1 1 0 0
0 0 −1 1

⎞

⎟
⎟
⎠ .

(12.15)

Successive application of U and its inverse Uᵀ transforms an individual, non-
entangled state from the Cartesian basis back and forth into an entangled, non-
individual state from the Bell basis. For the sake of another demonstration, consider
the following perfectly cyclic evolution which permutes all (non-)entangled states
corresponding to the Cartesian and Bell bases:

|e1〉 U�→ |Ψ −〉 V�→ |e2〉 U�→ |Ψ +〉 V�→ |e3〉 U�→ |Φ−〉 V�→ |e4〉 U�→ |Φ+〉 V�→ |e1〉.
(12.16)

This evolution is facilitated byU of Eq. (12.15), as well as by the following additional
unitary transformation [460]:

V = |e2〉〈Ψ −| + |e3〉〈Ψ +| + |e4〉〈Φ−| + |e1〉〈Φ+| =

=

⎛

⎜
⎜
⎝

〈Φ+|
〈Ψ −|
〈Ψ +|
〈Φ−|

⎞

⎟
⎟
⎠ = 1√

2

⎛

⎜
⎜
⎝

1 0 0 1
0 1 −1 0
0 1 1 0
1 0 0 −1

⎞

⎟
⎟
⎠ .

(12.17)

One of the ways thinking of this kind of “breathing in and out of individuality and
entanglement” is in terms of sampling and scrambling information, as quoted from
Chiao [251, p. 27] (reprinted in [350]): “Nothing has really been erased here, only
scrambled!” Indeed, mere re-coding or “scrambling,” and not erasure or creation
of information, is tantamount to, and an expression and direct consequence of, the
unitary evolution of the quantum state.

12.9 Quantum Probabilities

So far, quantum theory lacks probabilities. These will be introduced and compared to
classical probabilities next. Indeed, for the sake of appreciating the novel features of
quantum probabilities and correlations, as well as the (joint) expectations of quantum
observables, a short excursion into classical probability theory is useful.
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12.9.1 Boole’s Conditions of Possible Experience

Already George Boole, although better known for his symbolic logic calculus of
propositions aka Laws of Thought [66], pointed out that the probabilities of certain
events, as well as their (joint) occurrence are subject to linear constraints [45–50,
66, 67, 163, 181–183, 221, 257, 258, 328, 421, 424, 524, 541–543]. A typical
problem considered by Boole was the following [67, p. 229]: “Let p1, p2, . . . , pn

represent the probabilities given in the data. As these will in general not be the
probabilities of unconnected events, they will be subject to other conditions than that
of being positive proper fractions, . . .. Those other conditions will, as will hereafter
be shown, be capable of expression by equations or inequations reducible to the
general form a1 p1 + a2 p2 + · · · + an pn + a ≥ 0, a1, a2, . . . , an, a being numerical
constants which differ for the different conditions in question. These . . . may be
termed the conditions of possible experience.”

Independently, Bell [40] derived some bounds on classical joint probabilities
which relate to quantized systems insofar as they can be tested and falsified in
the quantum regime by measuring subsets of compatible observables (possibly by
Einstein–Podolsky–Rosen type [196] counterfactual inference) – one at a time – on
different subensembles prepared in the same state. Thereby, in hindsight, it appears
to be a bitter turn of history of thought that Bell, a staunch classical realist, who found
wanting [41] previous attempts [552, 554], created one of the most powerful theo-
rems used against (local) hidden variables. The present form of the “Bell inequal-
ities” is due to Wigner [572] (cf. Sakurai [439, pp. 241–243] and Pitowsky [397,
Footnote 13]. Fine [215] later pointed out that deterministic hidden variables just
amount to suitable joint probability functions.

In referring to a later paper by Bell [42], Froissart [143, 227] proposed a general
constructive method to produce all “maximal” (in the sense of tightest) constraints
on classical probabilities and correlations for arbitrary physical configurations. This
method uses all conceivable types of classical correlated outcomes, represented as
matrices (or higher dimensional objects) which are the vertices [227, p. 243] “of
a polyhedron which is their convex hull. Another way of describing this convex
polyhedron is to view it as an intersection of half-spaces, each one corresponding
to a face. The points of the polyhedron thus satisfy as many inequations as there are
faces. Computation of the face equations is straightforward but tedious.” That is,
certain “optimal” Bell-type inequalities can be interpreted as defining half-spaces
(“below-above,” “inside-outside”) which represent the faces of a convex correlation
polytope.

Later Pitowsky pointed out that any Bell-type inequality can be interpreted as
Boole’s condition of possible experience [396–400, 407]. Pitowsky does not quote
Froissart but mentions [396, p. 1556] that he had been motivated by a (series of)
paper(s) by Garg and Mermin [235] (who incidentally did not mention Froissart
either) on Farkas’ Lemma. Their concerns were linear constraints on pair dis-
tributions, derivable from the existence of higher-order distributions; constraints
which turn out to be Bell-type inequalities; derivable as facets of convex correlation
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polytopes. The Garg and Mermin paper is important because it concentrates on the
“inverse” problem: rather than finding high-order distributions from low-order ones,
they consider the question of whether or not those high-order distributions could
return random variables with first order distributions as marginals. One of the exam-
ples mentioned [235, p. 2] are “three dichotomic variables each of which assumes
either the value 1 or −1 with equal probability, and all the pair distributions vanish
unless the members of the pair have different values, then any third-order distri-
bution would have to vanish unless all three variables had different values. There
can therefore be no third-order distribution.” (I mention this also because of the
similarity with Specker’s parable of three boxes [479, 521].) A very similar ques-
tion had also been pursued by Vorob’ev [556] and Kellerer [304, 305], who inspired
Klyachko [312], as neither one of the previous authors are mentioned. [To be fair,
in the reference section of an unpublished previous paper [311] Klyachko mentions
Pitowsky two times; one reference not being cited in the main text.]

12.9.2 Classical Strategies: Probabilities from Convex
Sum of Truth Assignments and the Convex Polytope
Method

The gist of the classical strategy is to obtain all conceivable probabilities by a convex
polytopemethod: any classical probability distribution can bewritten as a convex sum
of all of the conceivable “extreme” cases. These “extreme” cases can be interpreted
as classical truth assignments; or, equivalently, as two-valued states. A two-valued
state is a function on the propositional structure of elementary observables, assigning
any proposition the values “0” and “1” if they are (for a particular “extreme” case)
“false” or “true,” respectively. “Extreme” cases are subject to criteria defined later
in Sect. 12.9.4. The first explicit use [502, 506, 511, 521] (see Pykacz [423] for an
early use of two-valued states) of the polytope method for deriving bounds using
two-valued states on logics with intertwined contexts seems to have been for the
pentagon logic, discussed in Sect. 12.9.8.3) and cat’s cradle logic (also called “Käfer,”
the German word for “bug,” by Specker), discussed in Sect. 12.9.8.4.

More explicitly, suppose that there be as many, say, k, “weights” λ1, . . . ,λk as
there are two-valued states (or “extreme” cases, or truth assignments, if you prefer
this denominations). Then convexity demands that all of these weights are positive
and sum up to one; that is,

λ1, . . . ,λk ≥ 0, and

λ1 + · · · + λk = 1.
(12.18)

Suppose further that for any particular, say, the i th, two-valued state (or the i th
“extreme” case, or the i th truth assignment, if you prefer this denomination), all
the, say, m, “relevant” terms – relevance here merely means that we want them to
contribute to the linear bounds denoted byBoole as conditions of possible experience,
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as discussed in Sect. 12.9.6 – are “lumped” or combined together and identified as
vector components of a vector |xi 〉 in an m-dimensional vector space Rm ; that is,

|xi 〉 = (
xi1 , xi2 , . . . , xim

)ᵀ
. (12.19)

Note that any particular convex [see Eq. (12.18)] combination

|w(λ1, . . . ,λk)〉 = λ1|x1〉 + · · · + λk |xk〉 (12.20)

of the k weights λ1, . . . ,λk yields a valid – that is consistent, subject to the criteria
defined later in Sect. 12.9.4 – classical probability distribution, characterized by the
vector |w(λ1, . . . ,λk)〉. These k vectors |x1〉, . . . , |xk〉 can be identified with vertices
or extreme points (which cannot be represented as convex combinations of other
vertices or extreme points), associated with the k two-valued states (or “extreme”
cases, or truth assignments). Let V = {|x1〉, . . . , |xk〉} be the set of all such vertices.

For any such subset V (of vertices or extreme points) of Rm , the convex hull is
defined as the smallest convex set in R

m containing V [230, Sect. 2.10, p. 6]. Based
on its vertices a convex V-polytope can be defined as the subset of Rm which is the
convex hull of a finite set of vertices or extreme points V = {|x1〉, . . . , |xk〉} in Rm :

P = Conv(V ) =

=
{

k∑

i=1

λi |xi 〉
∣
∣
∣λ1, . . . ,λk ≥ 0,

k∑

i=1

λi = 1, |xi 〉 ∈ V

}

.
(12.21)

A convex H-polytope can also be defined as the intersection of a finite set of
half-spaces, that is, the solution set of a finite system of n linear inequalities:

P = P(A, b) =
{
|x〉 ∈ R

m
∣
∣
∣Ai |x〉 ≤ |b〉 for 1 ≤ i ≤ n

}
, (12.22)

with the condition that the set of solutions is bounded, such that there is a constant
c such that ‖|x〉‖ ≤ c holds for all |x〉 ∈ P . Ai are matrices and |b〉 are vectors with
real components, respectively. Due to the Minkoswki-Weyl “main” representation
theorem [22, 230, 254, 274, 361, 449, 590] every V-polytope has a description by a
finite set of inequalities. Conversely, every H-polytope is the convex hull of a finite
set of points. Therefore the H-polytope representation in terms of inequalities as
well as the V-polytope representation in terms of vertices, are equivalent, and the
term convex polytope can be used for both and interchangeably. A k-dimensional
convex polytope has a variety of faces which are again convex polytopes of various
dimensions between 0 and k − 1. In particular, the 0-dimensional faces are called
vertices, the 1-dimensional faces are called edges, and the k − 1-dimensional faces
are called facets.

The solution of the hull problem, or the convex hull computation, is the determina-
tion of the convex hull for a given finite set of k extreme points V = {|x1〉, . . . , |xk〉}
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in R
m (the general hull problem would also tolerate points inside the convex poly-

tope); in particular, its representation as the intersection of half-spaces defining the
facets of this polytope – serving as criteria of what lies “inside” and “outside” of
the polytope – or, more precisely, as a set of solutions to a minimal system of linear
inequalities. As long as the polytope has a non-empty interior and is full-dimensional
(with respect to the vector space intowhich it is imbedded) there are only inequalities;
otherwise, if the polytope lies on a hyperplane one obtains also equations.

For the sake of a familiar example, consider the regular 3-cube,which is the convex
hull of the 8 vertices in R

3 of V = { (
0, 0, 0

)ᵀ
,
(
0, 0, 1

)ᵀ
,
(
0, 1, 0

)ᵀ
,
(
1, 0, 0

)ᵀ
,

(
0, 1, 1

)ᵀ
,
(
1, 1, 0

)ᵀ
,
(
1, 0, 1

)ᵀ
,
(
1, 1, 1

)ᵀ }
. The cube has 8 vertices, 12 edges, and

6 facets. The half-spaces defining the regular 3-cube can be written in terms of the 6
facet inequalities 0 ≤ x1, x2, x3 ≤ 1.

Finally the correlation polytope can be defined as the convex hull of all the ver-
tices or extreme points |x1〉, . . . , |xk〉 in V representing the (k per two-valued state)
“relevant” terms evaluated for all the two-valued states (or “extreme” cases, or truth
assignments); that is,

Conv(V ) =
{
|w(λ1, . . . ,λk)〉

∣
∣
∣

∣
∣
∣|w(λ1, . . . ,λk)〉 = λ1|x1〉 + · · · + λk |xk〉 ,

λ1, . . . ,λk ≥ 0, λ1 + · · · + λk = 1, |xi 〉 ∈ V
}
.

(12.23)

The convex H-polytope – associated with the convex V-polytope in (12.23) –
which is the intersection of a finite number of half-spaces, can be identified with
Boole’s conditions of possible experience.

A similar argument can be put forward for bounds on expectation values, as the
expectations of dichotomic E ∈ {−1,+1}-observables can be considered as affine
transformations of two-valued states v ∈ {0, 1}; that is, E = 2v − 1. One might
even imagine such bounds on arbitrary values of observables, as long as affine trans-
formations are applied. Joint expectations from products of probabilities transform
non-linearly, as, for instance E12 = (2v1 − 1)(2v2 − 1) = 4v1v2 − 2(v1 + v2) − 1.
So, given some bounds on (joint) expectations; these can be translated into bounds
on (joint) probabilities by substituting 2vi − 1 for expectations Ei . The converse
is also true: bounds on (joint) probabilities can be translated into bounds on (joint)
expectations by vi = (Ei + 1)/2.

This method of finding classical bounds must fail if, such as for Kochen–Specker
configurations, there are no or “too few” (such that there exist two or more atoms
which cannot be distinguished by any two-valued state) two-valued states. In this
case one my ease the assumptions; in particular, abandon admissibility, arriving at
what has been called non-contextual inequalities [92].
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12.9.3 Context and Greechie Orthogonality Diagrams

Henceforth a context will be anyBoolean (sub-)algebra of experimentally observable
propositions. The terms block or classical mini-universe will be used synonymously.

In classical physics there is only one context – and that is the entire set of observ-
ables. There exist models such as partition logics [184, 506, 511] – realizable by
Wright’s generalized urn model [578] or automaton logic [444–446, 499], – which
are still quasi-classical but have more than one, possibly intertwined, contexts. Two
contexts are intertwined if they share one or more common elements. In what fol-
lows we shall only consider contexts which, if at all, intertwine at a single atomic
proposition.

For such configurations Greechie has proposed a kind of orthogonality dia-
gram [249, 300, 523] in which

1. entire contexts (Boolean subalgebras, blocks) are drawn as smooth lines, such as
straight (unbroken) lines, circles or ellipses;

2. the atomic propositions of the context are drawn as circles; and
3. contexts intertwining at a single atomic proposition are represented as non-

smoothly connected lines, broken at that proposition.

In Hilbert space realizations, the straight lines or smooth curves depicting con-
texts represent orthogonal bases (or, equivalently, maximal observables, Boolean
subalgebras or blocks), and points on these straight lines or smooth curves represent
elements of these bases; that is, two points on the same straight line or smooth curve
represent two orthogonal basis elements. From dimension three onwards, bases may
intertwine [240] by possessing common elements.

12.9.4 Two-Valued Measures, Frame Functions
and Admissibility of Probabilities and Truth
Assignments

In what follows we shall use notions of “truth assignments” on elements of logics
which carry different names for related concepts:

1. The quantum logic community uses the term two-valued state; or, alternatively,
valuation for a total function v on all elements of some logic L mapping v : L →
[0, 1] such that [420, Definition 2.1.1, p. 20]

a. v(I) = 1,
b. if {ai , i ∈ N} is a sequence of mutually orthogonal elements in L – in particu-

lar, this applies to atoms within the same context (block, Boolean subalgebra)
– then the two-valued state is additive on those elements ai ; that is, additivity
holds:
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v

(
∨

i∈N

)

=
∑

i∈N
v(ai ). (12.24)

2. Gleason has used the term frame function [240, p. 886] of weight 1 for a separable
Hilbert space H as a total, real-valued (not necessarily two-valued) function f
defined on the (surface of the) unit sphere of H such that if {ai , i ∈ N} represents
an orthonormal basis of H, then additivity

∑

i∈N
f (ai ) = 1. (12.25)

holds for all orthonormal bases (contexts, blocks) of the logic based on H.
3. A dichotomic total function v : L → [0, 1] will be called strongly admissible if

a. within every context C = {ai , i ∈ N}, a single atom a j is assigned the value
one: v(a j ) = 1; and

b. all other atoms in that context are assigned the value zero: v(ai �= a j ) = 0.
Physically this amounts to only one elementary proposition being true; the
rest of them are false. (One may think of an array of mutually exclusively
firing detectors.)

c. Non-contextuality, stated explicitly]: The value of any observable, and, in
particular, of an atom in which two contexts intertwine, does not depend on
the context. It is context-independent.

4. In order to cope with value indefiniteness (cf. Sect. 12.9.8.7), a weaker form of
admissibility has been proposed [3–6] which is no total function but rather is a
partial function which may remain undefined (indefinite) on some elements of
L: A dichotomic partial function v : L → [0, 1] will be called admissible if the
following two conditions hold for every context C of L:

a. if there exists a a ∈ C with v(a) = 1, then v(b) = 0 for all b ∈ C \ {a};
b. if there exists a a ∈ C with v(b) = 0 for all b ∈ C \ {a}, then v(a) = 1;
c. the value assignments of all other elements of the logic not covered by, if

necessary, successive application of the admissibility rules, are undefined
and thus the atom remains value indefinite.

Unless otherwise mentioned (such as for contextual value assignments or admis-
sibility discussed in Sect. 12.9.8.7) the quantum logical (I), Gleason type (II), strong
admissibility (III) notions of two-valued states will be used. Such two valued states
(probability measures) are interpretable as (pre-existing) truth assignments; they are
sometimes also referred to as a Kochen–Specker value assignment [583].



12.9 Quantum Probabilities 77

12.9.5 Why Classical Correlation Polytopes?

A caveat seems to be in order from the very beginning: in what follows correlation
polytopes arise from classical (and quasi-classical) situations. The considerations
are relevant for quantum mechanics only insofar as the quantum probabilities could
violate classical bounds; that is, if the quantum tests violote those bounds by “lying
outside” of the classical correlation polytope.

There exist at least twogood reasons to consider (correlation) polytopes for bounds
on classical probabilities, correlations and expectation values:

1. they represent a systematic way of enumerating the probability distributions and
deriving constraints – Boole’s conditions of possible experience – on them;

2. one can be sure that these constraints and bounds are optimal in the sense that
they are guaranteed to yield inequalities which are best criteria for classicality.

It is not evident to see why, with the methods by which they have been obtained,
Bell’s original inequality [41, 42] or the Clauser–Horne–Shimony–Holt inequal-
ity [145] should be “optimal” at the time theywere presented. Their derivation involve
estimates which appear ad hoc; and it is not immediately obvious that bounds based
on these estimates could not be improved. The correlation polytope method, on the
other hand, offers a conceptually clear framework for a derivation of all classical
bounds on higher-order distributions.

12.9.6 What Terms May Enter Classical Correlation
Polytopes?

What can enter as terms in such correlation polytopes? To quote Pitowsky [397,
p. 38], “Consider n events A1, A2, . . . , An , in a classical event space . . . Denote
pi = probability(Ai ), pi j = probability(Ai ∩ A j ), and more generally pi1i2...ik =
probability

(
Ai1 ∩ Ai2 ∩ · · · ∩ Aik

)
, whenever 1 ≤ i1 < i2 < · · · < ik ≤ n. We

assume no particular relations among the events. Thus A1, . . . , An are not neces-
sarily distinct, they can be dependent or independent, disjoint or non-disjoint etc.”

However, although the events A1, . . . , An may be in any relation to one another,
one has to make sure that the respective probabilities, and, in particular, the extreme
cases – the two-valued states interpretable as truth assignments – properly encode
the logical or empirical relations among events. In particular, when it comes to
an enumeration of cases, consistency must be retained. For example, suppose one
considers the following three propositions: A1: “it rains in Vienna,” A3: “it rains in
Vienna or it rains in Auckland.” It cannot be that A2 is less likely than A1; therefore,
the two-valued states interpretable as truth assignments must obey p(A2) ≥ p(A1),
and in particular, if A1 is true, A2 must be true as well. (It may happen though
that A1 is false while A2 is true.) Also, mutually exclusive events cannot be true
simultaneously.
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These admissibility and consistency requirements are considerably softened in
the case of non-contextual inequalities [92], where subclassicality – the require-
ment that among a complete (maximal) set of mutually exclusiver observables only
one is true and all others are false (equivalent to one important criterion for Glea-
son’s frame function [240]) – is abandoned. To put it pointedly, in such scenarios,
the simultaneous existence of inconsistent events such as A1: “it rains in Vienna,”
A2: “it does not rain in Vienna” are allowed; that is, p(“it rains in Vienna”) =
p(“it does not rain in Vienna”) = 1. The reason for this rather desperate step is
that, for Kochen–Specker type configurations, there are no classical truth assign-
ments satisfying the classical admissibility rules; therefore the latter are abandoned.
(With the admissibility rules goes the classical Kolmogorovian probability axioms
even within classical Boolean subalgebras.)

It is no coincidence that most calculations are limited – or rather limit themselves
because there is no formal reasons to go to higher orders – to the joint probabilities
or expectations of just two observables: there is no easy “workaround” of quantum
complementarity. The Einstein–Podolsky–Rosen setup [196] offers one for just two
complementary contexts at the price of counterfactuals, but there seems to be no
generalization to three or more complementary contexts in sight [448].

12.9.7 General Framework for Computing Boole’s
Conditions of Possible Experience

As pointed out earlier, Froissart and Pitowsky, among others such as Tsirelson, have
sketched a very precise algorithmic framework for constructively finding all condi-
tions of possible experience. In particular, Pitowsky’s later method [397–400, 407],
with slight modifications for very general non-distributive propositional structures
such as the pentagon logic [506, 511, 521], goes like this:

1. define the terms which should enter the bounds;
2. a. if the bounds should be on the probabilities: evaluate all two-valuedmeasures

interpretable as truth assignments;
b. if the bounds should be on the expectations: evaluate all value assignments

of the observables;
c. if (as for non-contextual inequalities) the bounds should be on some pre-

defined quantities: evaluate all value definite pre-assigned quantities;
3. arrange these terms into vectors whose components are all evaluated for a fixed

two-valued state, one state at a time; one vector per two-valued state (truth assign-
ment), or (for expectations) per value assignments of the observables, or (for
non-contextual inequalities) per value-assignment;

4. consider the set of all obtained vectors as vertices of a convex polytope;
5. solve the convex hull problem by computing the convex hull, thereby finding the

smallest convex polytope containing all these vertices. The solution can be rep-
resented as the half-spaces (characterizing the facets of the polytope) formalized
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by (in)equalities – (in)equalities which can be identified with Boole’s conditions
of possible experience.

Froissart [227] and Tsirelson [143] are not much different; they arrange joint
probabilities for two random variables into matrices instead of “delineating” them as
vectors; but this difference is notational only. We shall explicitly apply the method
to various configurations next.

12.9.8 Some Examples

In what follows we shall enumerate several (non-)trivial – that is, non-Boolean in
the sense of pastings [249, 300, 376, 420] of Boolean subalgebras. Suppose some
points or vertices in R

n are given. The convex hull problem of finding the smallest
convex polytope containing all these points or vertices, given the latter, will be
solved evaluatedwith Fukuda’s cddlib package cddlib-094h [229] (usingGMP [223])
implementing the double description method [22, 23, 231].

12.9.8.1 Trivial Cases

Bounds on the Probability of One Observable

The case of a single variable has two extreme cases: false≡ 0 and true≡ 1, resulting
in the two vertices

(
0
)
as well as

(
1
)
, respectively. The corresponding hull problem

yields a probability “below 0” as well as “above 1,” respectively; thus solution this
rather trivial hull problem yields 0 ≤ p1 ≤ 1. For dichotomic expectation values ±1
a similar argument yields −1 ≤ E1 ≤ 1.

Bounds on the (Joint) Probabilities and Expectations of Two Observables

The next trivial case is just two dichotomic (two values) observables and their joint
probability. The respective logic is generated by the pairs (overline indicates nega-
tion) a1a2, a1ā2, ā1a2, ā1ā2, representable by a single Boolean algebra 24, whose
atoms are these pairs: a1a2, a1ā2, ā1a2, ā1ā2. For single Boolean algebras with k
atoms, there are k two-valued measures; in this case k = 4.

For didactive purposes this case has been covered ad nauseam in Pitowsky’s
introductions [396–400, 407]; so it is just mentioned without further discussion:
take the probabilities two observables p1 and p2, and a their joint variable p12 and
“bundle” them together into a vector

(
p1, p2, p1 ∧ p2 ≡ p12 = p1 p2

)ᵀ
of three-

dimensional vector space. Then enumerate all four extreme cases – the two-valued
states interpretable as truth assignments – involving two observables p1 and p2, and
a their joint variable p12 very explicitly false-false-false, false-true-false, true-false-
false, and true-true-true, or by numerical encoding, 0-0-0, 0, 1, 0, 1, 0, 0, and 1-1-1,
yielding the four vectors
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|v1〉 = (
0, 0, 0

)ᵀ
, |v2〉 = (

0, 1, 0
)ᵀ

,

|v3〉 = (
1, 0, 0

)ᵀ
, |v4〉 = (

1, 1, 1
)ᵀ

.
(12.26)

Solution of the hull problem for the polytope

{
λ1|v1〉 + λ2|v2〉 + λ3|v3〉 + λ4|v4〉

∣
∣
∣

∣
∣
∣λ1 + λ2 + λ3 + λ4 = 1,λ1,λ2,λ3,λ4 ≥ 0

} (12.27)

yields the “inside-outside” inequalities of the half-spaces corresponding to the four
facets of this polytope:

p1 + p2 − p12 ≤ 1,

0 ≤ p12 ≤ p1, p2.
(12.28)

For the expectation values of two dichotomic observables ±1 a similar argument
yields

E1 + E2 − E12 ≤ 1,

−E1 + E2 + E12 ≤ 1,

E1 − E2 + E12 ≤ 1,

−E1 − E2 − E12 ≤ 1.

(12.29)

Bounds on the (Joint) Probabilities and Expectations of Three Observables

Very similar calculations, taking into account three observables and their joint prob-
abilities and expectations, yield

p1 + p2 + p3 − p12 − p13 − p23 + p123 ≤ 1,

−p1 + p12 + p13 − p123 ≤ 0,

−p2 + p12 + p23 − p123 ≤ 0,

−p3 + p13 + p23 − p123 ≤ 0,

p12, p13, p23 ≥ p123 ≥ 0.

(12.30)

and
−E12 − E13 − E23 ≤ 1

−E12 + E13 + E23 ≤ 1,

E12 − E13 + E23 ≤ 1,

E12 + E13 − E23 ≤ 1,

−1 ≤ E123 ≤ 1.

(12.31)
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12.9.8.2 Einstein–Podolsky–Rosen Type “Explosion” Setups of Joint
Distributions Without Intertwined Contexts

The first non-trivial (in the sense that quantum probabilities and expectations violate
the classical bounds) instance occurs for four observables in an Einstein–Podolski–
Rosen type “explosion” setup [196], where n observables aremeasured on both sides,
respectively.

Clauser–Horne–Shimony–Holt Case: 2 Observers, 2 Measurement Configura-
tions per Observer

If just two observables are measured on the two sides, the facets of the polytope are
the Bell–Wigner–Fine (in the probabilistic version) as well as the Clauser–Horne–
Shimony–Holt (for joint expectations) inequalities; that is, for instance,

0 ≤ p1 + p4 − p13 − p14 + p23 − p24 ≤ 1,

−2 ≤ E13 + E14 + E23 − E24 ≤ 2.
(12.32)

To obtain a feeling, Fig. 12.1a depicts the Greechie orthogonality diagram of the 2
particle 2 observables per particle situation. Figure12.1b enumerates all two-valued
states thereon.

At this point itmight be interesting to see howexactly the approach of Froissart and
Tsirelson blends in [143, 227]. The only difference to the Pitowsky method – which
enumerates the (two particle) correlations and expectations as vector components
– is that Froissart and later and Tsirelson arrange the two-particle correlations and
expectations as matrix components; so both differ only by notation. For instance,
Froissart explicitly mentions [227, pp. 242–243] 10 extremal configurations of the
two-particle correlations, associated with 10 matrices

(
p13 = p1 p3 p14 = p1 p4

p23 = p2 p3 p24 = p2 p4

)

(12.33)

containing 0s and 1s (the indices “1, 2” and “3, 4” are associated with the two sides
of the Einstein–Podolsky–Rosen “explosion”-type setup, respectively), arranged in
Pitowsky’s case as vector

(
p13 = p1 p3, p14 = p1 p4, p23 = p2 p3, p24 = p2 p4

)
. (12.34)

For probability correlations the number of different matrices or vectors is 10 (and not
16 as could be expected from the 16 two-valued measures), since, as enumerated in
Table12.1 some suchmeasures yield identical results on the two-particle correlations;
in particular, v1, v2, v3, v4, v5, v9, v13 yield identical matrices (in the Froissart case)
or vectors (in the Pitowsky case).
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Fig. 12.1 a Four contexts
{a1, a′

1}, {a2, a′
2} on one

side, and {a3 ≡ b1, a′
3 ≡ b′

1},{a4 ≡ b2, a′
4 ≡ b′

2} an the
other side of the
Einstein–Podolsky–Rosen
“explosion”–type setup are
relevant for a computation of
the Bell–Wigner–Fine (in the
probabilistic version) as well
as the Clauser–Horne–
Shimony–Holt (for joint
expectations) inequalities;
b the 24 two-valued
measures thereon, tabulated
in Table12.1, which are used
to compute the vertices of
the correlation polytopes.
Full circles indicate the value
“1 ≡ true”
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Beyond the Clauser–Horne–Shimony–Holt Case: 2 Observers, More Measure-
ment Configurations per Observer

The calculation for the facet inequalities for two observers and three measurement
configurations per observer is straightforward and yields 684 inequalities [148, 407,
469]. If one considers (joint) expectations one arrives at novel ones which are not of
the Clauser–Horne–Shimony–Holt type; for instance [469, p. 166, Eq. (4)],
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Table 12.1 The 16 two-valued states on the 2 particle two observables per particle configura-
tion, as drawn in Fig. 12.1b. Two-particle correlations appear green. There are 10 different such
configurations, painted in red

# a1 a2 a3 a4 a13 a 14 a 23 a 24
v1 0 0 0 0 0 0 0 0
v2 0 0 0 1 0 0 0 0
v3 0 0 1 0 0 0 0 0
v4 0 0 1 1 0 0 0 0
v5 0 1 0 0 0 0 0 0
v6 0 1 0 1 0 0 0 1
v7 0 1 1 0 0 0 1 0
v8 0 1 1 1 0 0 1 1
v9 1 0 0 0 0 0 0 0
v10 1 0 0 1 0 1 0 0
v11 1 0 1 0 1 0 0 0
v12 1 0 1 1 1 1 0 0
v13 1 1 0 0 0 0 0 0
v14 1 1 0 1 0 1 0 1
v15 1 1 1 0 1 0 1 0
v16 1 1 1 1 1 1 1 1

−4 ≤ −E2 + E3 − E4 − E5 + E14 − E15 +
+E24 + E25 + E26 − E34 − E35 + E36,

−4 ≤ E1 + E2 + E4 + E5 + E14 + E15 +
+E16 + E24 + E25 − E26 + E34 − E35.

(12.35)

As already mentioned earlier, these bounds on classical expectations [469] trans-
late into bounds on classical probabilities [148, 407] (and vice versa) if the affine
transformations Ei = 2vi − 1 [and conversely vi = (Ei + 1)/2] are applied.

Here a word of warning is in order: if one only evaluates the vertices from the joint
expectations (and not also the single particle expectations), one never arrives at the
novel inequalities of the type listed in Eq. (12.35), but obtains 90 facet inequalities;
among them72 instances of theClauser–Horne–Shimony–Holt inequality form, such
as

E25 + E26 + E35 − E36 ≤ 2,

E14 + E15 + E24 − E25 ≤ 2,

−E25 − E26 − E35 + E36 ≤ 2,

−E14 − E15 − E24 + E25 ≤ 2.

(12.36)

They can be combined to yield (see also Ref. [469, p. 166, Eq. (4)])

−4 ≤ E14 + E15 + E24 + E26 + E35 − E36 ≤ 4. (12.37)
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For the general case of n qubits, algebraic methods different than the hull problem
for polytopes have been suggested in Refs. [404, 443, 567, 594].

12.9.8.3 Intertwined Contexts

In the following we shall present a series of logics whose contexts (representable by
maximal observables, Boolean subalgebras, blocks, or orthogonal bases) are inter-
twined; but “not much:” by assumption and for convenience, contexts intertwine in
only one element; it does not happen that two contexts are pasted [249, 300, 376,
420] along two or more atoms. (They nevertheless might be totally identical.) Such
intertwines – connecting contexts by pasting them together – can only occur from
Hilbert space dimension three onwards, as contexts in lower-dimensional spaces
cannot have the same element unless they are identical.

In Sect. 12.9.8.3 we shall first study the “firefly case” with just two contexts inter-
twined in one atom; then, in Sect. 12.9.8.3, proceed to the pentagon configuration
with five contexts intertwined cyclically, then, in Sect. 12.9.8.4, paste two such pen-
tagon logics to form a cat’s cradle (or, by another term, Specker’s bug) logic; and
finally, in Sect. 12.9.8.6, connect two Specker bugs to arrive at a logic which has a
so “meagre” set of states that it can no longer separate two atoms. As pointed out
already by Kochen and Specker [314, p. 70,] this is no longer imbeddable into some
Boolean algebra. It thus cannot be represented by a partition logic; and thus has
neither any generalized urn and finite automata models nor classical probabilities
separating different events. The case of logics allowing no two valued states will be
covered consecutively.

Firefly Logic

Cohen presented [147, pp. 21–22] a classical realization of the first logicwith just two
contexts and one intertwining atom: a firefly in a box, observed from two sides of this
box which are divided into two windows; assuming the possibility that sometimes
the firefly does not shine at all. This firefly logic, which is sometimes also denoted by
L12 because it has 12 elements (in a Hasse diagram) and 5 atoms, with the contexts
defined by {a1, a2, a5} and {a3, a4, a5} is depicted in Fig. 12.2.

The five two-valued states on the firefly logic are enumerated in Table12.2 and
depicted in Fig. 12.3.

These two-valued states induce [506] a partition logic realization [184, 511]
{{{1}, {2, 3}, {4, 5}}, {{1}, {2, 5}, {3, 4}}}which in turn induce all classical probability

a4

a3

a5

a2

a1

Fig. 12.2 Firefly logic with two contexts {a1, a2, a5} and {a3, a4, a5} intertwined in a5
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Table 12.2 Two-valued
states on the firefly logic

# a1 a2 a3 a4 a5

v1 0 0 0 0 1

v2 0 1 0 1 0

v3 0 1 1 0 0

v4 1 0 1 0 0

v5 1 0 0 1 0

v1 v2 v3

v4 v5

Fig. 12.3 Two-valuedmeasures on thefirefly logic. Filled circles indicate the value “1” interpretable
as “true”

λ2 + λ5

λ3 + λ4

λ1

λ2 + λ3

λ4 + λ5

Fig. 12.4 Classical probabilities on the firefly logicwith two contexts, as induced by the two-valued
states, and subject to λ1 + λ2 + λ3 + λ4 + λ5 = 1, 0 ≤ λ1, . . . ,λ5 ≤ 1

distributions, as depicted in Fig. 12.4. No representation in R3 is given here; but this
is straightforward (just two orthogonal tripods with one identical leg), or can be read
off from logics containing more such intertwined fireflies; such as in Fig. 12.6.

Pentagon Logic

Admissibility of two-valued states imposes conditions and restrictions on the two-
valued states already for a single context (Boolean subalgebra): if one atom is
assigned the value 1, all other atoms have to have value assignment(s) 0. This is
even more so for intertwining contexts. For the sake of an example, consider two
firefly logics pasted along an entire block, as depicted in Fig. 12.5. For such a logic
we can state a “true-and-true implies true” rule: if the two-valued measure at the
“outer extremities” is 1, then it must be 1 at its center atom.

We shall pursue this path of ever increasing restrictions through construction of
pasted; that is, intertwined, contexts. This ultimately yields to non-classical logics
which have no separating sets of two-valued states; and even, as in Kochen–Specker
type configurations, to logicswhich donot allow for any twovalued state interpretable
as preassigned truth assignments.

Let us proceed by pasting more firefly logics together in “closed circles.” The
next possibilities – two firefly logics forming either a triangle or a square Greechie
orthogonal diagram – have no realization in three dimensional Hilbert space. The
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a1

a2

a3 a4 a5

a6

a7

Fig. 12.5 Two firefly logics pasted along an entire context {a3, a4, a5}with the following property:
if a two valued state v is v(a1) = v(a6) = 1, or v(a1) = v(a7) = 1, or v(a2) = v(a6) = 1,
or v(a2) = v(a7) = 1, or then the “central atom” a4 must be v(a4) = 1. No representation in
R
3 is given here; but this is straightforward; or can be read off from logics containing more such

intertwined fireflies; such as in Fig. 12.6

& & =

�� a1

� a2

��a3

� a4

�� a5

�
a6

��a7

�a8

��a9

�
a10

Fig. 12.6 Orthogonality diagram of the pentagon logic, which is a pasting of 3 firefly log-
ics (two of which share an entire context), resulting in a pasting of five intertwined contexts
a = {a1, a2, a3}, b = {a3, a4, a5}, c = {a5, a6, a7}, d = {a7, a8, a9}, e = {a9, a10, a1}. They
have a (quantum) realization in R3 consisting of the 10 projections associated with the one dimen-

sional subspaces spanned by the vectors from the origin (0, 0, 0)ᵀ to a1 =
(

4
√
5,−

√√
5 − 2,

√
2
)ᵀ

,

a2 =
(
− 4

√
5,−

√
2 + √

5,
√
3 − √

5
)ᵀ

, a3 =
(
− 4

√
5,
√
2 + √

5,
√
3 + √

5
)ᵀ

, a4 =
(√

5 + √
5,

√
3 − √

5, 2
√

−2 + √
5
)ᵀ

, a5 =
(
0,−

√√
5 − 1, 1

)ᵀ
, a6 =

(
−
√
5 + √

5,
√
3 − √

5,

2
√√

5 − 2
)ᵀ

, a7 =
(

4
√
5,
√
2 + √

5,
√
3 + √

5
)ᵀ

, a8 =
(

4
√
5,−

√
2 + √

5,
√
3 − √

5
)ᵀ

, a9 =
(
− 4

√
5,−

√√
5 − 2,

√
2
)ᵀ

, a10 =
(
0,

√
2,
√√

5 − 2
)ᵀ

, respectively [523, Fig. 8, p. 5393].

Another such realization is a1 = (1, 0, 0)ᵀ, a2 = (0, 1, 0)ᵀ, a3 = (0, 0, 1)ᵀ, a4 = (1,−1, 0)ᵀ,
a5 = (1, 1, 0)ᵀ, a6 = (1,−1, 2)ᵀ, a7 = (−1, 1, 1)ᵀ, a8 = (2, 1, 1)ᵀ, a9 = (0, 1,−1)ᵀ,
a10 = (0, 1, 1)ᵀ, respectively [532]
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Table 12.3 Two-valued states on the pentagon

# a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

v1 1 0 0 1 0 1 0 1 0 0

v2 1 0 0 0 1 0 0 1 0 0

v3 1 0 0 1 0 0 1 0 0 0

v4 0 0 1 0 0 1 0 1 0 1

v5 0 0 1 0 0 0 1 0 0 1

v6 0 0 1 0 0 1 0 0 1 0

v7 0 1 0 0 1 0 0 1 0 1

v8 0 1 0 0 1 0 0 0 1 0

v9 0 1 0 1 0 0 1 0 0 1

v10 0 1 0 1 0 1 0 0 1 0

v11 0 1 0 1 0 1 0 1 0 1

ve
1
2 0 1

2 0 1
2 0 1

2 0 1
2 0

next diagram realizably is obtained by a pasting of three firefly logics. It is the pen-
tagon logic (also denoted as orthomodular house [300, p. 46, Fig. 4.4] and discussed
in Ref. [50]; see also Birkhoff’s distributivity criterion [57, p. 90, Theorem 33],
stating that, in particular, if some lattice contains a pentagon as sublattice, then it
is not distributive [60]) which is subject to an old debate on “exotic” probability
measures [577]. In terms of Greechie orthogonality diagrams there are two equiva-
lent representations of the pentagon logic: one as a pentagon, as depicted [521] in
Fig. 12.6 and one as a pentagram; thereby the indices of the intertwining edges (the
non-intertwining ones follow suit) are permuted as follows: 1 �→ 1, 9 �→ 5, 7 �→ 9,
5 �→ 3, 3 �→ 7. From a Greechie orthogonality point of view the pentagon repre-
sentation is preferable over the pentagram, because the latter, although appearing
more “magic,” might suggest the illusion that there are more intertwining contexts
and observables as there actually are.

As pointed out by Wright [577, p 268] the pentagon has 11 “ordinary” two-
valued states v1, . . . , v11, and one “exotic” dispersionless state ve, which was shown
by Wright to have neither a classical nor a quantum interpretation; all defined on the
10 atoms a1, . . . , a10. They are enumerated in Table12.3. and depicted in Fig. 12.7.

These two-valued states directly translate into the classical probabilities depicted
in Fig. 12.8.

The pentagon logic has quasi-classical realizations in terms of partition log-
ics [184, 506, 511], such as generalized urn models [577, 578] or automaton log-
ics [444–446, 499]. An early realization in terms of three-dimensional (quantum)
Hilbert space can, for instance, be found in Ref. [523, pp. 5392–5393]; other such
parametrizations are discussed in Refs. [24, 85, 86, 312].

The full hull problem, including all joint expectations of dichotomic ±1 observ-
ables yields 64 inequalities enumerated in the supplementary material; among them
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Fig. 12.7 Two-valued measures on the pentagon logic. Filled circles indicate the value “1” inter-
pretable as “true.” In the last diagram non-filled circles indicate the value “ 12 ”

�� λ1 + λ2 + λ3

� λ7 + λ8 + λ9 + λ10 + λ11

�� λ4 + λ5 + λ6

� λ1 + λ3 + λ9 + λ10 + λ11

�� λ2 + λ7 + λ8

�
λ1 + λ4 + λ6 + λ10 + λ11

��λ3 + λ5 + λ9

�λ1 + λ2 + λ4 + λ7 + λ11

��λ6 + λ8 + λ10

�λ4 + λ5 + λ7 + λ9 + λ11

Fig. 12.8 Classical probabilities on the pentagon logic, λ1 + · · · + λ11 = 1, λ1, . . . ,λ11 ≥ 0,
taken from Ref. [521]

E12 ≤ E45, E18 ≤ E7,10,

E16 + E26 + E36 + E48 ≤ E18 + E28 + E34 + E59,

E14 + E18 + E28 ≤ 1 + E12 + E16 + E26 + E36 + E48 + E5,10.

(12.38)

The full hull computations for the probabilities p1, . . . , p10 on all atoms a1, . . . ,

a10 reduces to 16 inequalities, among them
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+p4 + p8 + p9 ≥ +p1 + p2 + p6,

2p1 + p2 + p6 + p10 ≥ 1 + p4 + p8.
(12.39)

If one considers only the five probabilities on the intertwining atoms, then the Bub-
Stairs inequality p1 + p3 + p5 + p7 + p9 ≤ 2 results [24, 85, 86]. Concentration on
the four non-intertwining atoms yields p2 + p4 + p6 + p8 + p10 ≥ 1. Limiting the
hull computation to adjacent pair expectations of dichotomic ±1 observables yields
the Klyachko–Can–Biniciogolu–Shumovsky inequality [312]

E13 + E35 + E57 + E79 + E91 ≥ 3. (12.40)

12.9.8.4 Combo of Two Intertwined Pentagon Logics Forming
a Specker Bug (or Pitowsky Cat’s Cradle) “True Implies
False” Logic

The pasting of two pentagon logics results in ever tighter conditions for two-valued
measures and thus truth value assignments: consider the Greechie orthogonality
diagram of a logic drawn in Fig. 12.9. Specker [481] called this the “Käfer” (bug)
Logic because of the similar shape with a bug. It has been introduced in 1963(5)
by Kochen and Specker [313, Fig. 1, p. 182]; and subsequently used as a subset of
the diagrams Γ1, Γ2 and Γ3 demonstrating the existence of quantum propositional
structures with the “true implies true” property (cf. Sect. 12.9.8.5), the non-existence
of any two-valued state (cf. Sect. 12.9.8.7), and the existence of a non-separating set
of two-valued states (cf. Sect. 12.9.8.6), respectively [314].

Pitowsky called it (part of [429]) “cat’s cradle” [403, 405] (see also Refs. [39,
Fig. B.l. p. 64], [483, pp. 588–589], [1, Sect. IV, Fig. 2] and [420, p. 39, Fig. 2.4.6]
for early discussions). A partition logic, as well as a Hilbert space realization can
be found in Refs. [511, 523]. There are 14 two-valued states which are listed in
Table12.4.

As already Pták and Pulmannová [420, p. 39, Fig. 2.4.6] as well as Pitowsky [403,
405] have pointed out, the reduction of some probabilities of atoms at intertwined
contexts yields [521, p. 285, Eq. (11.2)]

p1 + p7 = 3

2
− 1

2
(p12 + p13 + p2 + p6 + p8) ≤ 3

2
. (12.41)

A better approximation comes from the explicit parameterization of the classical
probabilities on the atoms a1 and a7, derivable from all the mutually disjoined two-
valued states which do not vanish on those atoms, as depicted in Fig. 12.10: p1 =
λ1 +λ2 +λ3, and p7 = λ7 +λ10 +λ13. Because of additivity the 14 positive weights
λ1, . . . ,λ14 ≥ 0 must add up to 1; that is,

∑14
i=1 λi = 1. Therefore,
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& =

a3 a4 a5

a2 a6

a1 a7

a13

a12 a8

a11 a10 a9

Fig. 12.9 Greechie diagram of the Specker bug (cat’s cradle) logic which results from a pasting
of two pentagon logics sharing three common contexts. It is a pasting of seven intertwined con-
texts a = {a1, a2, a3}, b = {a3, a4, a5}, c = {a5, a6, a7}, d = {a7, a8, a9}, e = {a9, a10, a11},
f = {a11, a12, a1}, g = {a4, a13, a10}. They have a (quantum) realization in R

3 consisting of the
13 projections associatedwith the one dimensional subspaces spanned by the vectors from the origin

(0, 0, 0)ᵀ to a1 =
(
1,

√
2, 0

)ᵀ
, a2 =

(√
2,−1,−3

)ᵀ
, a3 =

(√
2,−1, 1

)ᵀ
, a4 = (0, 1, 1)ᵀ, a5 =

(√
2, 1,−1

)ᵀ
, a6 =

(√
2, 1, 3

)ᵀ
, a7 =

(
−1,

√
2, 0

)ᵀ
, a8 =

(√
2, 1,−3

)ᵀ
, a9 =

(√
2, 1, 1

)ᵀ
,

a10 = (0, 1,−1)ᵀ, a11 =
(√

2,−1,−1
)ᵀ

, a12 =
(√

2,−1, 3
)ᵀ

, a13 = (1, 0, 0)ᵀ, respec-
tively [533, p. 206, Fig. 1] (see also [523, Fig. 4, p. 5387])

Table 12.4 The 14 two-valued states on the Specker bug (cat’s cradle) logic

# a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13

v1 1 0 0 0 1 0 0 0 1 0 0 0 1

v2 1 0 0 1 0 1 0 0 1 0 0 0 0

v3 1 0 0 0 1 0 0 1 0 1 0 0 0

v4 0 1 0 0 1 0 0 0 1 0 0 1 1

v5 0 1 0 0 1 0 0 1 0 0 1 0 1

v6 0 1 0 1 0 1 0 0 1 0 0 1 0

v7 0 1 0 1 0 0 1 0 0 0 1 0 0

v8 0 1 0 1 0 1 0 1 0 0 1 0 0

v9 0 1 0 0 1 0 0 1 0 1 0 1 0

v10 0 0 1 0 0 0 1 0 0 0 1 0 1

v11 0 0 1 0 0 1 0 1 0 0 1 0 1

v12 0 0 1 0 0 1 0 0 1 0 0 1 1

v13 0 0 1 0 0 0 1 0 0 1 0 1 0

v14 0 0 1 0 0 1 0 1 0 1 0 1 0
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λ10 + λ11+
+λ12 + λ13 + λ14

λ2 + λ6+
+λ7 + λ8

λ1 + λ3 + λ4+
+λ12 + λ13 + λ14

λ4 + λ5 + λ6+
+λ7 + λ8 + λ9

λ2 + λ6 + λ8+
+λ11 + λ12 + λ14

λ1 + λ2 + λ3 λ7 + λ10 + λ13

λ1 + λ4 + λ5+
+λ10 + λ11+
+λ12

λ4 + λ6 + λ9+
+λ12 + λ13 + λ14

λ3 + λ5 + λ8+
+λ9 + λ11 + λ14

λ5 + λ7 + λ8+
+λ10 + λ11

λ3 + λ9+
+λ13 + λ14

λ1 + λ2 + λ4+
+λ6 + λ12

Fig. 12.10 Classical probabilities on the Specker bug (cat’s cradle) logic; λ1 + · · · + λ14 = 1,
0 ≤ λ1, . . . ,λ14 ≤ 1, taken from Ref. [521]. The two-valued states i = 1, . . . , 14 can be identified
by taking λ j = δi, j for all j = 1, . . . 14

p1 + p7 = λ1 + λ2 + λ3 + λ7 + λ10 + λ13 ≤
14∑

i=1

λi = 1. (12.42)

For two-valued measures this yields the “1–0” or “true implies false” rule [515]:
if a1 is true, then a7 must be false. For the sake of another proof by contradiction,
suppose a1 as well as a7 were both true. This would (by the admissibility rules) imply
a3, a5, a9, a11 to be false, which in turn would imply both a4 as well as a10, which
have to be true in one and the same context – a clear violation of the admissibility
rules stating that within a single context there can only be atom which is true. This
property, which has already been exploited by Kochen and Specker [314, Γ1] to
construct both a logic with a non-separating, as well as one with a non-existent set
of two valued states. These former case will be discussed in the next section. For the
time being, instead of drawing all two valued states separately, Fig. 12.10 enumerates
the classical probabilities on the Specker bug (cat’s cradle) logic.

The hull problem yields 23 facet inequalities; one of them relating p1 to p7:
p1+p2+p7+p6 ≥ 1+p4,which is satisfied, since, by subadditivity, p1+p2 = 1−p3,
p7 + p6 = 1 − p5, and p4 = 1 − p5 − p3. This is a good example of a situation
in which considering just Boole–Bell type inequalities do not immediately reveal
important aspects of the classical probabilities on such logics.

A restricted hull calculation for the joint expectations on the six edges of the
Greechie orthogonality diagram yields 18 inequalities; among them

E13 + E57 + E9,11 ≤ E35 + E79 + E11,1. (12.43)

A tightened “true implies 3-times-false” logic depicted in Fig. 12.11 has been
introduced by Yu and Oh [584]. As can be derived from admissibility in a straight-
forward manner, the set of 24 two-valued states [536] enforces at most one of the
four atoms h0, h1, h2, h3 to be 1. Therefore, classically ph0 + ph1 + ph2 + ph3 ≤ 1.
This can also be explicitly demonstrated by noticing that, from the 24 two-valued
states, exactly 3 acquire the value 1 on each one of the four atoms h0, h1, h2, and h3;
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Fig. 12.11 Two equivalent representations of a Petersen graph-like (with one additional context
connecting z1, z2, and z3) Greechie diagram of the logic considered by Yu and Oh [584, Fig. 2].
The set of two-valued states enforces at most one of the four atoms h0, h1, h2, h3 to be 1. The
logic has a (quantum) realization in R

3 consisting of the 25 projections; associated with the one
dimensional subspaces spanned by the 13 vectors from the origin (0, 0, 0)ᵀ to z1 = (1, 0, 0)ᵀ,
z2 = (0, 1, 0)ᵀ, z3 = (0, 0, 1)ᵀ, y−

1 = (0, 1,−1)ᵀ, y−
2 = (1, 0,−1)ᵀ, y−

3 = (1,−1, 0)ᵀ, y+
1 =

(0, 1, 1)ᵀ, y+
2 = (1, 0, 1)ᵀ, y+

3 = (1, 1, 0)ᵀ, h0 = (1, 1, 1)ᵀ, h1 = (−1, 1, 1)ᵀ, h2 = (1,−1, 1)ᵀ,
h3 = (1, 1,−1)ᵀ, respectively [584]

also the respective two-valued states are different for these four different atoms h0,
h1, h2, and h3. More explicitly, suppose the set of two-valued states is enumerated
in such a way that the respective probabilities on the atoms h0, h1, h2, and h3 are
ph0 = λ1+λ2+λ3, ph1 = λ4+λ5+λ6, ph2 = λ7+λ8+λ9, and ph3 = λ10+λ11+λ12.
Because of additivity the 24 positive weights λ1, . . . ,λ24 ≥ 0 must add up to 1; that
is,
∑24

i=1 λi = 1. Therefore [compare with Eq. (12.42)],

ph0 + ph1 + ph2 + ph3 =
12∑

j=1

λ j ≤
24∑

i=1

λi = 1. (12.44)

Tkadlec has noted [536] that Fig. 12.11 contains 3 Specker bug subdiagrams per
atom hi , thereby rendering the “true implies 3-times-false” property. For instance,
for h1 the three Specker bugs are formed by the three sets of contexts (missing
non-interwining atoms should be added)

1 : {{h1, y+
3 }, {y+

3 , y−
3 }, {y−

3 , h3}, {h3, y+
1 }, {y+

1 , y−
1 }, {y−

1 , h1}, {z1, z3}},
2 : {{h1, y+

2 }, {y+
2 , y−

2 }, {y−
2 , h2}, {h2, y+

1 }, {y+
1 , y−

1 }, {y−
1 , h1}, {z1, z2}},

3 : {{h1, y+
3 }, {y+

3 , y−
3 }, {y−

3 , h0}, {h0, y−
2 }, {y−

2 , y+
2 }, {y+

2 , h1}, {z3, z2}}.
(12.45)
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Fig. 12.12 Greechie diagram of the Kochen–Specker Γ1 logic [314, p. 68], which is an extension
of the Specker bug logic by two intertwining contexts at the bug’s extremities. The logic has a
(quantum) realization in R

3 consisting of the 16 projections associated with the one dimensional
subspaces spanned by the vectors from the origin (0, 0, 0)ᵀ to the 13 points mentioned in Fig. 12.9,

as well as c = (0, 0, 1)ᵀ, b1 =
(√

2, 1, 0
)ᵀ

, b7 =
(√

2,−1, 0
)ᵀ

, respectively [533, p. 206, Fig. 1]

12.9.8.5 Kochen–Specker’s Γ1 “True Implies True” Logic

A small extension of the Specker bug logic by two contexts extending from a1 and
a7, both intertwining at a point c renders a logic which facilitates that, whenever a1

is true, so must be an atom b1, which is element in the context {a7, c, b1}, as depicted
in Fig. 12.12.

The reduction of some probabilities of atoms at intertwined contexts yields (q1, q7

are the probabilities on b1, b7, respectively), additionally to Eq. (12.41),

p1 − p7 = q1 − q7, (12.46)

which, as can be derived also explicitly by taking into account admissibility, implies
that, for all the 112 two-valued states, if p1 = 1, then [from Eq. (12.41)] p7 = 0,
and q1 = 1 as well as q7 = 1 − q1 = 0.

Besides the quantum mechanical realization of this logic in terms of propositions
identified with projection operators corresponding to vectors in three-dimensional
Hilbert space Tkadlec and this author [523, p. 5387, Fig. 4] (see also Tkadlec [533,
p. 206, Fig. 1]) have given an explicit collection of such vectors. As Tkadlec has
observed (cf.Ref. [523, p. 5390], andRef. [535, p.]), the original realization suggested
by Kochen and Specker [314] appears to be a little bit “buggy” as they did not use
the right angle between a1 and a7, but this could be rectified.
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Other “true implies true” logics have been introduced by Belinfante [39, Fig. C.l.
p. 67], Pitowsky [289, p. 394], Clifton [1, 293, 546], as well as Cabello and G.
García-Alcaine [100, Lemma 1].

Notice that, if a second Specker bug logic is placed along b1 and b7, just as in
the Kochen–Specker Γ3 logic [314, p. 70], this imposes an additional “true implies
false” condition; together with the “true implies false” condition of the first logic
this implies the fact that a1 and a7 can no longer be separated by some two-valued
state: whenever one is true, the other one must be true as well, and vice versa. This
Kochen–Specker logic Γ3 will be discussed in the next Sect. 12.9.8.6.

Notice further that if we manage to iterate this process in such a manner that, with
every i th iteration we place another Kochen–Specker Γ3 logic along bi , while at the
same time increasing the angle between bi and b1, then eventually we shall arrive at
a situation in which b1 and bi are part of a context (in terms of Hilbert space: they
correspond to orthogonal vectors). But admissibility disallows two-valued measures
with more than one, and in particular, two “true” atoms within a single block. As
a consequence, if such a configuration is realizable (say, in 3-dimensional Hilbert
space), then it cannot have any two-valued state satisfying the admissibility crite-
ria. This is the Kochen–Specker theorem, as exposed in the Kochen–Specker Γ3

logic [314, p. 69], which will be discussed in Sect. 12.9.8.7.

12.9.8.6 Combo of Two Linked Specker Bug Logics Inducing
Non-separability

As we are heading toward logics with less and less “rich” set of two-valued states we
are approaching a logic depicted in Fig. 12.13 which is a combination of two Specker
bug logics linked by two external contexts. It is the Γ3-configuration of Kochen–
Specker [314, p. 70] with a set of two-valued states which is no longer separating: In
this case one obtains the “one-one” and “zero-zero rules” [515], stating that a1 occurs
if and only if b1 occurs (likewise, a7 occurs if and only if b7 occurs): Suppose v is a
two-valued state on the Γ3-configuration of Kochen–Specker. Whenever v(a1) = 1,
then v(c) = 0 because it is in the same context {a1, c, b7} as a1. Furthermore,
because of Eq. (12.41), whenever v(a1) = 1, then v(a7) = 0. Because b1 is in the
same context {a7, c, b1} as a7 and c, because of admissibility, v(b1) = 1. Conversely,
by symmetry, whenever v(b1) = 1, so must be v(a1) = 1. Therefore it can never
happen that either one of the two atoms a1 and b1 have different dichotomic values.
(Eq. 12.46 is compatible with these value assignments.) The same is true for the pair
of atoms a7 and b7.

Note that one needs two Specker bug logics tied together (at their “true implies
false” extremities) to obtain non-separability; just extending one to the Kochen–
Specker Γ1 logic [314, p. 68] of Fig. 12.12 discussed earlier to obtain “true implies
true” would be insufficient. Because in this case a consistent two-valued state exists
for which v(b1) = v(b7) = 1 and v(a1) = v(a7) = 0, thereby separating a1 from
b1, and vice versa. A second Specker bug logic is needed to eliminate this case; in
particular, v(b1) = v(b7) = 1.



12.9 Quantum Probabilities 95

a3 b3

a4 b4

a5 b5

a2 b2

a6 b6

a1 b1

a7 b7

a13 b13

a12 b12

a8 b8

a11 b11

a10 b10

a9 b9

c

Fig. 12.13 Greechie diagram of two linked Specker bug (cat’s cradle) logics Γ3. The logic has a
(quantum) realization in R

3 consisting of the 27 projections associated with the one dimensional
subspaces spanned by the vectors from the origin (0, 0, 0)ᵀ to the 13 points mentioned in Fig. 12.9,

the 3 points mentioned in Fig. 12.12, as well as b2 =
(
1,−√

2,−3
)ᵀ

, b3 =
(
−1,

√
2,−1

)ᵀ
, b4 =

(1, 0,−1)ᵀ, b5 =
(
1,

√
2, 1

)ᵀ
, b6 =

(
1,

√
2,−3

)ᵀ
, b8 =

(
1,

√
2, 3

)ᵀ
, b9 =

(
1,

√
2,−1

)ᵀ
,

b10 = (1, 0, 1)ᵀ,b11 =
(
−1,

√
2, 1

)ᵀ
,b12 =

(
−1,

√
2,−3

)ᵀ
,b13 = (0, 1, 0)ᵀ, respectively [533,

p. 206, Fig. 1]. Note that, with this realization, there is an additional context {a13, c, b13} not drawn
here, which imposes an additional constraint v(a13)+v(c)+v(b13) = 1 on any two-valuedmeasure
v (See also the proof of Proposition 7.2 in Ref. [523, p. 5392].)

Besides the quantum mechanical realization of this logic in terms of propositions
which are projection operators corresponding to vectors in three-dimensional Hilbert
space suggested by Kochen and Specker [314], Tkadlec has given [533, p. 206,
Fig. 1] an explicit collection of such vectors (see also the proof of Proposition 7.2 in
Ref. [523, p. 5392]).

Probabilistic Criteria Against Value Definiteness from Contraints
on Two-Valued measures

The “1-1” or “true implies true” rule can be taken as an operational criterion for
quantization: Suppose that one prepares a system to be in a pure state correspond-
ing to a1, such that the preparation ensures that v(a1) = 1. If the system is then
measured along b1, and the proposition that the system is in state b1 is found to be
not true, meaning that v(b1) �= 1 (the respective detector does not click), then one
has established that the system is not performing classically, because classically the
set of two-valued states requires non-separability; that is, v(a1) = v(b1) = 1. With

the Tkadlec directions taken from Figs. 12.9 and 12.12, |a1〉 = (1/
√
3)
(
1,

√
2, 0

)ᵀ
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and |b1〉 = (1/
√
3)
(√

2, 1, 0
)ᵀ

so that the probability to find a quantized system

prepared along |a1〉 and measured along |b1〉 is pa1(b1) = |〈b1|a1〉|2 = 8/9, and that
a violation of classicality should occur with probability 1/9. Of course, any other
classical prediction, such as the “1-0” or “true implies false” rule, or more general
classical predictions such as of Eq. (12.41) can also be taken as empirical criteria for
non-classicality [521, Sect. 11.3.2.]).

Indeed, already Stairs [483, pp. 588–589] has argued along similar lines for
the Specker bug “true implies false” logic (a translation into our nomenclature is:
m1(1) ≡ a1, m2(1) ≡ a3, m2(2) ≡ a5, m2(3) ≡ a4, m3(1) ≡ a11, m3(2) ≡ a9,
m3(3) ≡ a10, m4(1) ≡ a7). Independently Clifton (there is a note added in proof
to Stairs [483, pp. 588–589]) presents asimilar argument, based upon (i) another
“true implies true” logic [1, 293, 546, Sects. II, III, Fig. 1] inspired by Bell [39,
Fig. C.l. p. 67] (cf. also Pitowsky [289, p. 394]), as well as (ii) on the Specker bug
logic [1, Sect. IV, Fig. 2]. More recently Hardy [70, 264, 265] as well as Cabello
and García-Alcaine and others [24, 90, 95, 96, 99, 138] discussed such scenarios.
These criteria for non-classicality are benchmarks aside from the Boole–Bell type
polytope method, and also different from the full Kochen–Specker theorem.

Imbedability

As every algebra imbeddable in a Boolean algebra must have a separating set of two
valued states, this logic is no longer “classical” in the sense of “homomorphically
(structure-preserving) imbeddable.” Nevertheless, two-valued states can still exist. It
is just that these states can no longer differentiate between the pairs of atoms (a1, b1)
aswell as (a7, b7). Partition logics and their generalized urn or finite automatamodels
fail to reproduce two linked Specker bug logics resulting in a Kochen–Specker Γ3

logic even at this stage. Of course, the situation will become more dramatic with the
non-existence of any kind of two-valued state (interpretable as truth assignment) on
certain logics associate with quantum propositions.

Complementarity and non-distributivity is not enough to characterize logicswhich
do not have a quasi-classical (partition logical, set theoretical) interpretation. While
in a certain, graph coloring sense the “richness/scarcity” and the “number” of two-
valued homomorphisms” yields insights into the old problem of the structural prop-
erty [152] by separating quasi-classical from quantum logics, the problem of finding
smaller, maybe minimal, subsets of graphs with a non-separating set of two-valued
states still remains an open challenge.

Chromatic Inseparability

The “true implies true” rule is associated with chromatic separability; in particular,
with the impossibility to separate two atoms a7 and b7 with less than four colors.
A proof is presented in Fig. 12.14. That chromatic separability on the unit sphere
requires 4 colors is implicit in Refs. [245, 269].
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Fig. 12.14 Proof (by contradiction) that chromatic separability of two linked Specker bug (cat’s
cradle) logics Γ3 cannot be achieved with three colors. In particular, a7 and b7 cannot be separated,
as this would result in the depicted inconsistent coloring: suppose a red/green/blue coloring with
chromatic admissibility (“all three colors occur only once per context or block or Boolean sub-
algebra”) is possible. Then, if a7 is colored red and b7 is colored green, c must be colored blue.
Therefore, a1 must be colored red. Therefore, a4 as well as a10 must be colored red (similar for
green on the second Specker bug), contradicting admissibility

12.9.8.7 Propositional Structures Without Two-Valued States

Gleason-Type Continuity

Gleason’s theorem [240] was a response to Mackey’s problem to “determine all
measures on the closed subspaces of a Hilbert space” contained in a review [351] of
Birkhoff and von Neumann’s centennial paper [62] on the logic of quantummechan-
ics. Starting from von Neumann’s formalization of quantum mechanics [552, 554],
the quantummechanical probabilities and expectations (aka the Born rule) are essen-
tially derived from (sub)additivity among the quantum context; that is, from sub-
classicality: within any context (Boolean subalgebra, block, maximal observable,
orthonormal base) the quantum probabilities sum up to 1.

Gleason’s finding caused ripples in the community, at least of those who cared and
coped with it [41, 151, 180, 301, 314, 401, 434, 591]. (I recall having an argument
with Van Lambalgen around 1983, who could not believe that anyone in the larger
quantum community had not heard of Gleason’s theorem. As we approached an
elevator at Vienna University of Technology’s Freihaus building we realized there
was also one very prominent member of Vienna experimental community entering
the cabin. I suggested to stage an example by asking; and voila. . .)
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With the possible exception of Specker who did not explicitly refer to the Glea-
son’s theorem in independently announcing that two-valued states on quantum logics
cannot exist [479] – he must have made up his mind from other arguments and pre-
ferred to discuss scholastic philosophy; at that time the Swiss may have had their
own biotope – Gleason’s theorem directly implies the absence of two-valued states.
Indeed, at least for finite dimensions [11, 12], as Zierler andSchlessinger [591, p. 259,
Example 3.2] (even before publication of Bell’s review [41]) noted, “it should also
be mentioned that, in fact, the non-existence of two-valued states is an elementary
geometric fact contained quite explicitly in [240, Paragraph 2.8].”

Now, Gleason’s Paragraph 2.8 contains the following main (necessity) theo-
rem [240, p. 888]: “Every non-negative frame function on the unit sphere S in R

3

ir regular.” Whereby [240, p. 886] “a frame function f [[satisfying additivity]] is
regular if and only if there exists a self-adjoint operator T defined on [[the separable
Hilbert space]] H such that f (|x〉) = 〈Tx |x〉 for all unit vectors |x〉.” (Of course,
Gleason did not use the Dirac notation.)

In what follows we shall consider Hilbert spaces of dimension n = 3 and higher.
Suppose that the quantum system is prepared to be in a pure state associated with
the unit vector |x〉, or the projection operator |x〉〈x |.

As all self-adjoint operators have a spectral decomposition [260, Sect. 79], and
the scalar product is (anti)linear in its arguments, let us, instead of T, only consider
one-dimensional orthogonal projection operators E2

i = Ei = |yi 〉〈yi | (formed by
the unit vector |yi 〉 which are elements of an orthonormal basis {|y1〉, . . . , |yn〉})
occurring in the spectral sum of T = ∑n≥3

i=1 λiEi , with In = ∑n≥3
i=1 Ei .

Thus if T is restricted to some one-dimensional projection operator E = |y〉〈y|
along |y〉, then Gleason’s main theorem states that any frame function reduces to
the absolute square of the scalar product; and in real Hilbert space to the square of
the angle between those vectors spanning the linear subspaces corresponding to the
two projectors involved; that is (note that E is self-adjoint), fy(|x〉) = 〈Ex |x〉 =
〈x |Ex〉 = 〈x |y〉〈y|x〉 = |〈x |y〉|2 = cos2 ∠(x, y).

Hence, unless a configuration of contexts is not of the star-shapedGreechie orthog-
onality diagram form – meaning that they all share one common atom; and, in terms
of geometry, meaning that all orthonormal bases share a common vector – and the
two-valued state has value 1 on its centre, as depicted in Fig. 12.15, there is no way
how any two contexts could have a two-valued assignment; even if one context has
one: it is just not possible by the continuous, cos2-form of the quantum probabilities.
That is (at least in this author’s believe) the watered down version of the remark of
Zierler and Schlessinger [591, p. 259, Example 3.2].

Finite Logics Admitting No Two-Valued States

When it comes to the absence of a global two-valued state on quantum logics corre-
sponding to Hilbert spaces of dimension three and higher – where contexts or blocks
can be intertwined or pasted [376] to form chains – Kochen and Specker [314] pur-
sued a very concrete, “constructive” (in the sense of finitary mathematical objects
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Fig. 12.15 Greechie
diagram of a star shaped
configuration with a variety
of contexts, all intertwined in
a single “central” atom; with
overlaid two-valued state
(bold black filled circle)
which is one on the centre
atom and zero everywhere
else (see also Refs. [3, 5, 6])

but not in the sense of physical operationalizability [79]) strategy: they presented
finite logics realizable by vectors (from the origin to the unit sphere) spanning one-
dimensional subspaces, equivalent to observable propositions, which allowed for
lesser and lesser two-valued state properties. For the reason of non-imbedability
is already enough to consider two linked Specker bugs logics Γ3 [314, p. 70], as
discussed in Sect. 12.9.8.6.

Kochen and Specker went further and presented a proof by contradiction of the
non-existence of two-valued states on a finite number of propositions, based on their
Γ1 “true implies true” logic [314, p. 68] discussed in Fig. 12.12, iterating them until
they reached a complete contradiction in their Γ2 logic [314, p. 69]. As has been
pointed out earlier, their representation as points of the sphere is a little bit “buggy”
(as could be expected from the formation of so many bugs): as Tkadlec has observed,
Kochen–Specker diagramΓ2 it is not a one-to-one representation of the logic, because
some different points at the diagram represent the same element of corresponding
orthomodular poset (cf. Ref. [523, p. 5390], and Ref. [535, p.]).

The early 1990s saw an ongoing flurry of papers recasting the Kochen–Specker
proofwith ever smaller numbers of, ormore symmetric, configurations of observables
(see Refs. [17, 83, 96, 97, 112, 307, 340, 364, 385, 386, 390, 391, 408, 472, 523,
533–535, 557, 558, 583, 593] for an incomplete list). Arguably the most compact
such logic is one in four-dimensional space suggested by Cabello, Estebaranz and
García-Alcaine [91, 96, 385]. It consists of 9 contexts, with each of the 18 atoms
tightly intertwined in two contexts. Its Greechie orthogonality diagram is drawn in
Fig. 12.16.

In a parity proof by contradiction consider the particular subset of real four-
dimensionalHilbert spacewith a “parity property,” consisting of 18 atomsa1, . . . , a18

in 9 contexts, as depicted in Fig. 12.16. Note that, on the one hand, each atom/point/
vector/projector belongs to exactly two – that is, an even number of – contexts; that
is, it is biconnected. Therefore, any enumeration of all the contexts occurring in the
graph depicted in Fig. 12.16 would contain an even number of 1s assigned. Because,
due to non-contextuality and biconnectivity, any atom a with v(a) = 1 along one
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Fig. 12.16 The most compact way of deriving the Kochen–Specker theorem in four dimensions
has been given by Cabello, Estebaranz and García-Alcaine [96]. The configuration consists of 18
biconnected (two contexts intertwine per atom) atoms a1, . . . , a18 in 9 contexts. It has a (quantum)
realization in R

4 consisting of the 18 projections associated with the one dimensional subspaces
spanned by the vectors from the origin (0, 0, 0, 0)ᵀ to a1 = (0, 0, 1,−1)ᵀ, a2 = (1,−1, 0, 0)ᵀ,
a3 = (1, 1,−1,−1)ᵀ, a4 = (1, 1, 1, 1)ᵀ, a5 = (1,−1, 1,−1)ᵀ, a6 = (1, 0,−1, 0)ᵀ, a7 =
(0, 1, 0,−1)ᵀ, a8 = (1, 0, 1, 0)ᵀ, a9 = (1, 1,−1, 1)ᵀ, a10 = (−1, 1, 1, 1)ᵀ, a11 = (1, 1, 1,−1)ᵀ,
a12 = (1, 0, 0, 1)ᵀ, a13 = (0, 1,−1, 0)ᵀ, a14 = (0, 1, 1, 0)ᵀ, a15 = (0, 0, 0, 1)ᵀ, a16 =
(1, 0, 0, 0)ᵀ, a17 = (0, 1, 0, 0)ᵀ, a18 = (0, 0, 1, 1)ᵀ, respectively [92, Fig. 1] (for alternative real-
izations see Refs. [91, 92])

context must have the same value 1 along the second context which is intertwined
with the first one – to the values 1 appear in pairs.

Alas, on the other hand, in such an enumeration there are nine – that is, an odd
number of – contexts. Hence, in order to obey the quantum predictions, any two-
valued state (interpretable as truth assignment) would need to have an odd number
of 1s – exactly one for each context. Therefore, there cannot exist any two-valued
state on Kochen–Specker type graphs with the “parity property.”

More concretely, note that, within each one of those 9 contexts, the sum of any
state on the atoms of that context must add up to 1. That is, due to additivity (12.24)
and (12.25) one obtains a system of 9 equations
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v(a) = v(a1) + v(a2) + v(a3) + v(a4) = 1,

v(b) = v(a4) + v(a5) + v(a6) + v(a7) = 1,

v(c) = v(a7) + v(a8) + v(a9) + v(a10) = 1,

v(d) = v(a10) + v(a11) + v(a12) + v(a13) = 1,

v(e) = v(a13) + v(a14) + v(a15) + v(a16) = 1,

v( f ) = v(a16) + v(a17) + v(a18) + v(a1) = 1,

v(g) = v(a6) + v(a8) + v(a15) + v(a17) = 1,

v(h) = v(a3) + v(a5) + v(a12) + v(a14) = 1,

v(i) = v(a2) + v(a9) + v(a11) + v(a18) = 1.

(12.47)

By summing up the left hand side and the right hand sides of the equations, and since
all atoms are biconnected, one obtains

2

[
18∑

i=1

v(ai )

]

= 9. (12.48)

Because v(ai ) ∈ {0, 1} the sum in (12.48) must add up to some natural number
M . Therefore, Eq. (12.48) is impossible to solve in the domain of natural numbers,
as on the left and right hand sides there appear even (2M) and odd (9) numbers,
respectively.

Of course, one could also prove the nonexistence of any two-valued state (inter-
pretable as truth assignment) by exhaustive attempts (possibly exploiting symme-
tries) to assign values 0s and 1s to the atoms/points/vectors/projectors occurring in the
graph in such away that both the quantumpredictions aswell as context independence
is satisfied. This latter method needs to be applied in cases with Kochen–Specker
type diagrams without the “parity property;” such as in the original Kochen–Specker
proof [314]. (However, admissibility (IV) is too weak for a proof of this type, as it
allows also a third, value indefinite, state, which spoils the arguments [6].)

This result, as well as the original Kochen–Specker theorem, is state independent
insofar as it applies to an arbitrary quantum state. One could reduce the size of the
proof by assuming a particular state. Such proofs are called state-specific or state
dependent. By following Cabello, Estebaranz and García-Alcaine [96, Eqs. (10)–
(19), p. 185] their state independent proof utilizing the logic depicted in Fig. 12.16
can be transferred to a state-specific proof as follows: suppose that the quantum (or
quanta, depending upon the physical realization) is prepared in the state

v(a1) = 1, (12.49)

so that any two-valued state must obey the admissibility rules

v(a2) = v(a3) = v(a4) = v(a16) = v(a17) = v(a18) = 0. (12.50)
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Fig. 12.17 Greechie orthogonality diagram of a state-specific proof of the Kochen–Specker the-
orem based on the assumption that the physical system is in state a1, such that v(a1) = 1. The
additivity and admissibility constraints (12.51) represent different “reduced” (or “truncated”) con-
texts, because all states v(a2) = v(a3) = v(a4) = v(a16) = v(a17) = v(a18) = 0 “orthogonal to”
a1 must vanish

The additivity relations (12.47) reduce to seven equations (two equations encoding
contexts a and f are satisfied trivially)

v(b′) = v(a5) + v(a6) + v(a7) = 1,

v(c) = v(a7) + v(a8) + v(a9) + v(a10) = 1,

v(d) = v(a10) + v(a11) + v(a12) + v(a13) = 1,

v(e′) = v(a13) + v(a14) + v(a15) = 1,

v(g′) = v(a6) + v(a8) + v(a15) = 1,

v(h′) = v(a5) + v(a12) + v(a14) = 1,

v(i ′) = v(a9) + v(a11) = 1.

(12.51)

The configuration is depicted in Fig. 12.17.As all atoms remain to be biconnected and
there are 7, that is, an odd number, of equations, value indefiniteness can be proven
by a similar parity argument as before. One could argue that the “primed” contexts
in (12.51) are not complete because those contexts are “truncated.” However, every
completion would result in vectors orthogonal to a1; and therefore their values must
again be zero.

Chromatic Number of the Sphere

Graph coloring allows another view on value (in)definiteness. The chromatic number
of a graph is defined as the least number of colors needed in any total coloring of a
graph; with the constraint that two adjacent vertices have distinct colors.
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Suppose that we are interested in the chromatic number of graphs associated with
both (i) the real and (ii) the rational three-dimensional unit sphere.

More generally, we can consider n-dimensional unit spheres with the same adja-
cency property defined by orthogonality. An orthonormal basis will be called con-
text (block, maximal observable, Boolean subalgebra), or, in this particular area, a
n-clique. Note that for any such graphs involving n-cliques the chromatic number
of this graph is at least be n (because the chromatic number of a single n-clique or
context is n).

Thereby vertices of the graph are identified with points on the three-dimensional
unit sphere; with adjacency defined by orthogonality; that is, two vertices of the
graph are adjacent if and only if the unit vectors from the origin to the respective two
points are orthogonal.

The connection to quantum logic is this: any context (block, maximal observable,
Boolean subalgebra, orthonormal basis) can be represented by a triple of points on
the sphere such that any two unit vectors from the origin to two distinct points of
that triple of points are orthogonal. Thus graph adjacency in logical terms indicates
“belonging to some common context (block, maximal observable, Boolean subalge-
bra, orthonormal basis).”

In three dimensions, if the chromatic number of graphs is four or higher, there
does not globally exist any consistent coloring obeying the rule that adjacent vertices
(orthogonal vectors) must have different colors: if one allows only three different
colors, then somewhere in that graph of chromatic number higher than three, adjacent
vertices must have the same colors (or else the chromatic number would be three or
lower).

By a similar argument, non-separability of two-valued states – such as encoun-
tered in Sect. 12.9.8.6 with the Γ3-configuration of Kochen–Specker [314, p. 70]
– translates into non-differentiability by colorings with colors less or equal to the
number of atoms in a block (cf. Fig. 12.14).

Godsil and Zaks [245, 269] proved the following results:

1. the chromatic number of the graph based on points of real-valued unit sphere is
four [245, Lemma 1.1].

2. he chromatic number of rational points on the unit sphere S3 ∩ Q
3 is three [245,

Lemma 1.2].

We shall concentrate on (i) and discuss (ii) later. As has been pointed out byGodsil
in an email conversation from March 13, 2016 [244], “the fact that the chromatic
number of the unit sphere in R

3 is four is a consequence of Gleason’s theorem,
from which the Kochen–Specker theorem follows by compactness. Gleason’s result
implies that there is no subset of the sphere that contains exactly one point from each
orthonormal basis.”

Indeed, any coloring can be mapped onto a two-valued state by identifying a
single color with “1” and all other colors with “0.” By reduction, all propositions
on two-valued states translate into statements about graph coloring. In particular, if
the chromatic number of any logical structure representable as graph consisting of
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n-atomic contexts (blocks, maximal observables with n outcomes, Boolean subalge-
bras 2n , orthonormal bases with n elements) – for instance, as Greechie orthogonality
diagramof quantum logics – is larger than n, then there cannot be any globally consis-
tent two-valued state (truth value assignment) obeying adjacency (aka admissibility).
Likewise, if no two-valued states on a logic which is a pasting of n-atomic contexts
exist, then, by reduction, no global consistent coloring with n different colors exists.
Therefore, the Kochen–Specker theorem proves that the chromatic number of the
graph corresponding to the unit sphere with adjacency defined as orthogonality must
be higher than three.

Based on Godsil and Zaks finding that the chromatic number of rational points
on the unit sphere S3 ∩ Q

3 is three [245, Lemma 1.2] – thereby constructing a two-
valued measure on the rational unit sphere by identifying one color with “1” and the
two remaining colors with “0” – there exist “exotic” options to circumvent Kochen–
Specker type constructions which have been quite aggressively (Cabello has referred
to this as the second contextuality war [94]) marketed by allegedly “nullifying” [369]
the respective theorems under the umbrella of “finite precision measurements” [32,
75, 76, 146, 306, 366]: the support of vectors spanning the one-dimensional sub-
spaces associated with atomic propositions could be “diluted” yet dense, so much
so that the intertwines of contexts (blocks, maximal observables, Boolean subalge-
bras, orthonormal bases) break up; and the contexts themselves become “free and
isolated.” Under such circumstances the logics decay into horizontal sums; and the
Greechie orthogonality diagrams are just disconnected stacks of previously inter-
twined contexts. As can be expected, proofs of Gleason- or Kochen–Specker-type
theorems do no longer exist, as the necessary intertwines are missing.

The “nullification” claim and subsequent ones triggered a lot of papers, some cited
in [32]; mostly critical – of course, not to the results of Godsil and Zaks’s finding
(ii); how could they? – but to their physical applicability. Peres even wrote a parody
by arguing that “finite precision measurement nullifies Euclid’s postulates” [392],
so that “nullification” of the Kochen–Specker theorem might have to be our least
concern.

Exploring Value Indefiniteness

Maybe one could, with all due respect, speak of “extensions” of the Kochen–Specker
theorem by looking at situations in which a system is prepared in a state |x〉〈x|
along direction |x〉 and measured along a non-orthogonal, non-collinear projection
|y〉〈y| along direction |y〉. Those extensions yield what may be called [286, 401]
indeterminacy. Indeterminacy may be just another word for contextuality; but, as
has been suggested by the realist Bell, the latter term implicitly implies that there “is
something (rather than nothing) out there,” some “pre-existing observable” which,
however, needs to depend on the context of the measurement. To avoid such implicit
assumption we shall henceforth use indeterminacy rather than contextuality.

Pitowsky’s logical indeterminacy principle [401, Theorem 6, p. 226] states that,
given two linearly independent non-orthogonal unit vectors |x〉 and |y〉 inR3, there is
a finite set of unit vectors Γ (|x〉, |y〉) containing |x〉 and |y〉 for which the following
statements hold:
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1. There is no (not necessarily two-valued) state v on Γ (|x〉, |y〉) which satisfies
v(|x〉) = v(|y〉) = 1.

2. There is no (not necessarily two-valued) v on Γ (|x〉, |y〉)which satisfies v(|x〉) =
1 and v(|y〉) = 0.

3. There is no (not necessarily two-valued) state v on Γ (|x〉, |y〉) which satisfies
v(|x〉) = 0 and v(|y〉) = 1.

Stated differently [286, Theorem 2, p 183], let |x〉 and |y〉 be two non-orthogonal
rays in a Hilbert space H of finite dimension ≥ 3. Then there is a finite set of rays
Γ (|x〉, |y〉) containing |x〉 and |y〉 such that a (not necessarily two-valued) state v

on Γ (|x〉, |y〉) satisfies v(|x〉), (|y〉) ∈ {0, 1} only if v(|x〉) = v(|y〉) = 0. That
is, if a system of three mutually exclusive outcomes (such as the spin of a spin-1
particle in a particular direction) is prepared in a definite state |x〉 corresponding to
v(|x〉) = 1, then the state v(|y〉) along some direction |y〉 which is neither collinear
nor orthogonal to |x〉 cannot be (pre-)determined, because, by an argument via some
set of intertwined raysΓ (|x〉, |y〉), both caseswould lead to a complete contradiction.

The proofs of the logical indeterminacy principle presented by Pitowsky and
Hrushovski [286, 401] is global in the sense that any ray in the set of intertwining
rays Γ (|x〉, |y〉) in-between |x〉 and |y〉 – and thus not necessarily the “beginning
and end points” |x〉 and |y〉 – may not have a pre-existing value. (If you are an omni-
realist, substitute “pre-existing” by “non-contextual:” that is, any ray in the set of
intertwining rays Γ (|x〉, |y〉) may violate the admissibility rules and, in particular,
non-contextuality.) Therefore, one might argue that the cases (i) as well as (ii); that
is, v(|x〉) = v(|y〉) = 1. as well as v(|x〉) = 1 and v(|y〉) = 0 might still be
predefined, whereas at least one ray in Γ (|x〉, |y〉) cannot be pre-defined. (If you are
an omni-realist, substitute “pre-defined” by “non-contextual.”)

This possibility has been excluded in a series of papers [3–6] localizing value
indefiniteness. Thereby the strong admissibility rules coinciding with two-valued
states which are total function on a logic, have been generalized or extended (if you
prefer “weakened”) in such away as to allow for value definiteness. Essentially, by
allowing the two-valued state to be a partial function on the logic, which need not be
defined any longer on all of its elements, admissability has been defined by two rules
(IV) of Sect. 12.9.4: if v(|x〉) = 1, then a measurement of all the other observables in
a context containing |x〉must yield the value 0 for the other observables in this context
– as well as counterfactually, in all contexts including |x〉 and in mutually orthogonal
rays which are orthogonal to |x〉, such as depicted as the star-shaped configuration
in Fig. 12.15. Likewise, if all propositions but one, say the one associated with |x〉,
in a context have value 0, then this proposition |x〉 is assigned the value 1; that is,
v(|x〉) = 1.

However, as long as the entire context containsmore than two atoms, if v(|x〉) = 0
for some proposition associated with |x〉, any of the other observables in the context
containing |x〉 could still yield the value 1 or 0. Therefore, these other observables
need not be value definite. In such a formalism, and relative to the assumptions –
in particular, by the admissibility rules allowing for value indefiniteness – sets of
intertwined rays Γ (|x〉, |y〉) can be constructed which render value indefiniteness of
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property |y〉〈y| if the system is prepared in state |x〉 (and thus v(|x〉) = 1). More
specifically, sets of intertwined raysΓ (|x〉, |y〉) can be foundwhich demonstrate that,
in accord with the “weak” admissibility rules (IV) of Sect. 12.9.4, in Hilbert spaces of
dimension greater than two, in accord with complementarity, any proposition which
is complementary with respect to the state prepared must be value indefinite [3–6].

How Can You Measure a Contradiction?

Clifton replied with this (rhetorical) question after I had asked if he could imagine
any possibility to somehow “operationalize” the Kochen–Specker theorem.

Indeed, theKochen–Specker theorem – in particular, not only non-separability but
the total absence of any two-valued state – has been resilient to attempts to somehow
“measure” it: first, as alluded by Clifton, its proof is by contraction – any assumption
or attempt to consistently (in accordance with admissibility) construct two-valued
state on certain finite subsets of quantum logics provably fails.

Second, the very absence of any two-valued state on such logics reveals the futility
of any attempt to somehow define classical probabilities; let alone the derivation of
any Boole’s conditions of physical experience – both rely on, or are, the hull spanned
by the vertices derivable from two-valued states (if the latter existed) and the respec-
tive correlations. So, in essence, on logics corresponding to Kochen–Specker config-
urations, such as theΓ2-configuration ofKochen–Specker [314, p. 69], or theCabello,
Estebaranz and García-Alcaine logic [91, 96] depicted in Fig. 12.16 which (subject
to admissibility) have no two-valued states, classical probability theory breaks down
entirely – that is, in the most fundamental way; by not allowing any two-valued state.

It is amazing how many papers exist which claim to “experimentally verify” the
Kochen–Specker theorem. However, without exception, those experiments either
prove some kind of Bell–Boole of inequality on single-particles (to be fair this is
referred to as “proving contextuality;” such as, for instance, Refs. [36, 98, 267,
268, 309]); or show that the quantum predictions yield complete contradictions if
one “forces” or assumes the counterfactual co-existence of observables in different
contexts (and measured in separate, distinct experiments carried out in different
subensembles; e.g., Refs. [91, 250, 383, 467, 468]; again these lists of references
are incomplete.)

Of course, what one could still do is measuring all contexts, or subsets of compat-
ible observables (possibly by Einstein–Podolsky–Rosen type [196] counterfactual
inference) – one at a time – on different subensembles prepared in the same state
by Einstein–Podolsky–Rosen type [196] experiments, and comparing the complete
sets of results with classical predictions [250]. For instance, multiplying all products
of dichotomic ±1 observables within contexts, and summing up the results in par-
ity proofs such as for the Cabello, Estebaranz and García-Alcaine logic depicted in
Fig. 12.16 must yield differences between the classical and the quantum predictions
– in this case parity odd and even, respectively.

Contextual Inequalities

If one is willing to drop admissibility altogether while at the same time maintain-
ing non-contextuality – thereby only assuming that the hidden variable theories



12.9 Quantum Probabilities 107

assign values to all the observables [54, Sect. 4, p. 375], thereby only assuming
non-contextuality [92], one arrives at contextual inequalities [16]. Of course, these
value assignments need to be much more general as the admissibility requirements
on two-valued states; allowing all 2n (instead of just n combinations) of contexts
with n atoms; such as 1 − 1 − 1 − · · · − 1, or 0 − 0 − · · · − 0. For example,
Cabello has suggested [92] to consider fourth order correlations within all the
contexts (blocks; really within single maximal observables) constituting the logic
considered by Cabello, Estebaranz and García-Alcaine [91, 96], and depicted as a
Greechie orthogonality diagram in Fig. 12.16. For the sake of demonstration, con-
sider a Greechie (orthogonality) diagram of a finite subset of the continuum of blocks
or contexts imbeddable in four-dimensional real Hilbert space without a two-valued
probability measure. More explicitly, the correlations are with nine tightly intercon-
nected contexts a = {a1, a2, a3, a4}, b = {a4, a5, a6, a7}, c = {a7, a8, a9, a10},
d = {a10, a11, a12, a13}, e = {a13, a14, a15, a16}, f = {a16, a17, a18, a1}, g =
{a6, a8, a15, a17} h = {a3, a5, a12, a14}, i = {a2, a9, a11, a18}, respectively.

A hull problem can be defined as follows: (i) assume that each one of the 18
(partially counterfactual) observables a1, a2, . . . , a18 independently acquires either
the definite value “−1” or “+1,” respectively. There are 218 = 262144 such cases.
Note that, essentially, thereby all information on the intertwine structure is elimi-
nated (the only remains are in the correlations taken in the next step), as one treats
all observables to belong to a large Boolean algebra of 18 atoms a1, a2, . . . , a18;
(ii) form all the 9 four-order correlations according to the context (block) struc-
ture a1a2a3a4, a4a5a6a7, . . . , a2a9a11a18, respectively; (iii) then evaluate (by mul-
tiplication) each one of these nine observables according to the valuations cre-
ated in (i); (iv) for each one of the 218 valuations form a 9-dimensional vector
(E1 = a1a2a3a4, E2 = a4a5a6a7, . . . , E9 = a2a9a11a18)

ᵀ which contains all the val-
ues computed in (iii), and consider them as vertices (of course, there will be many
duplicates which can be eliminated) defining a correlation polytope; (v) finally,
solve the hull problem for this polytope. The resulting 274 inequalities and 256
vertices (a reverse vertex computation reveals 256 vertices; down from 218) confirms
Cabello’s [92] as well as other bounds [521, Eq. (8)]; among them

−1 ≤ E1 ≤ 1,

E1 + 7 ≥ E2 + E3 + E4 + E5 + E6 + E7 + E8 + E9,

E1 + E8 + E9 + 7 ≥ E2 + E3 + E4 + E5 + E6 + E7,

E1 + E6 + E7 + E8 + E9 + 7 ≥ E2 + E3 + E4 + E5,

E1 + E4 + E5 + E6 + E7 + E8 + E9 + 7 ≥ E2 + E3,

E1 + E2 + E3 + E4 + E5 + E6 + E7 + E8 + E9 + 7 ≥ 0.

(12.52)

Similar calculations for the pentagon and the Specker bug logics, by “bundling”
the 3rd order correlations within the contexts (blocks, 3-atomic Boolean subalge-
bras), yield 32 (down from 210 = 1024 partially duplicate) vertices and 10 “trivial”
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inequalities for the bug logic, as well as 128 (down from 213 = 8192 partially
duplicate) vertices and 14 “trivial” inequalities for the Specker bug logic.

12.9.9 Quantum Probabilities and Expectations

Since from Hilbert space dimension higher than two there do not exist any two-
valued states, the (quasi-)classical Boolean strategy to find (or define) probabilities
via the convex sum of two-valued states brakes down entirely. Therefore, as this
happened to be [172, 173, 295, 551, 552, 554], the quantum probabilities have to
be “derived” or postulated from entirely new concepts, based upon quantities – such
as vectors or projection operators – in linear vector spaces equipped with a scalar
product. One guiding principle should be that, among those observables which are
simultaneously co-measurable (that is, whose projection operators commute), the
classical probability theory should hold.

Historically, what is often referred to asBorn rule for calculating probabilities, has
been a statistical re-interpretation of Schrödinger’s wave function [68, Footnote 1,
Anmerkung bei der Korrektur, p. 865], as outlined by Dirac [172, 173] (a digression:
a small piece [176] on “the futility of war” by the late Dirac is highly recommended;
I had the honour listening to the talk personally), Jordan [295], von Neumann [551,
552, 554], and Lüders [89, 346, 347].

Rather than stating it as axiom of quantum mechanics, Gleason [240] derived
the Born rule from elementary assumptions; in particular from subclassicality:
within contexts – that is, among mutually commuting and thus simultaneously co-
measurable observables – the quantum probabilities should reduce to the classical,
Kolmogorovian, form. In particular, the probabilities of propositions corresponding
to observables which are (i) mutually exclusive (in geometric terms: correspond to
orthogonal vectors/projectors) as well as (ii) simultaneously co-measurable observ-
ables are (i) non-negative, (ii) normalized, and (iii) finite additive as in Eqs. (12.24)
and (12.25); that is, probabilities (of atoms within contexts or blocks) add up to
one [259, Sect. 1].

As already mentioned earlier, Gleason’s paper made a high impact on those in
the community capable of comprehending it [41, 151, 180, 301, 314, 401, 434,
591]. Nevertheless it might not be unreasonable to state that, while a proof of the
Kochen–Specker theorem is straightforward, Gleason’s results are less attainable.
However, in what follows we shall be less concerned with either necessity nor with
mixed states, but shall rather concentrate on sufficiency and pure states. (This will
also rid us of the limitations to Hilbert spaces of dimensions higher that two.)

Recall that pure states [172, 173] as well as elementary yes-no propositions [62,
552, 554] can both be represented by (normalized) vectors in some Hilbert space.
If one prepares a pure state corresponding to a unit vector |x〉 (associated with the
one-dimensional projection operator Ex = |x〉〈x|) and measures an elementary yes-
no proposition, representable by a one-dimensional projection operator Ey = |y〉〈y|
(associated with the vector |y〉), then Gleason notes [240, p. 885] in the second
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paragraph that (in Dirac notation), “it is easy to see that such a [[probability]]
measure μ can be obtained by selecting a vector |y〉 and, for each closed subspace
A, taking μ(A) as the square of the norm of the projection of |y〉 on A.”

Since in Euclidean space, the projection Ey of |y〉 on A = span(|x〉) is the
dot product (both vectors |x〉, |y〉 are supposed to be normalized) |x〉〈x|y〉 =
|x〉 cos∠(|x〉, |y〉), Gleason’s observation amounts to the well-known quantum
mechanical cosine square probability law referring to the probability to find a system
prepared a in state in another, observed, state. (Once this is settled, all self-adjoint
observables follow by linearity and the spectral theorem.)

In this line of thought, “measurement” contexts (orthonormal bases) allow“views”
on “prepared” contexts (orthonormal bases) by the respective projections.

For the sake of demonstration, suppose some unit vector |ρ〉 corresponding to a
pure quantum state (preparation) is selected. For each one-dimensional closed sub-
space corresponding to a one-dimensional orthogonal projection observable (inter-
pretable as an elementary yes-no proposition) E = |e〉〈e| along the unit vector |e〉,
define wρ(|e〉) = |〈e|ρ〉|2 to be the square of the length |〈ρ|e〉| of the projection of
|ρ〉 onto the subspace spanned by |e〉.

The reason for this is that an orthonormal basis {|ei 〉} “induces” an ad hoc prob-
ability measure wρ on any such context (and thus basis). To see this, consider the
length of the orthogonal (with respect to the basis vectors) projections of |ρ〉 onto all
the basis vectors |ei 〉, that is, the norm of the resulting vector projections of |ρ〉 onto
the basis vectors, respectively. This amounts to computing the absolute value of the
Euclidean scalar products 〈ei |ρ〉 of the state vector with all the basis vectors.

In order that all such absolute values of the scalar products (or the associated
norms) sum up to one and yield a probability measure as required in Eqs. (12.24)
and (12.25), recall that |ρ〉 is a unit vector and note that, by the Pythagorean theorem,
these absolute values of the individual scalar products – or the associated norms of
the vector projections of |ρ〉 onto the basis vectors – must be squared. Thus the value
wρ(|ei 〉) must be the square of the scalar product of |ρ〉 with |ei 〉, corresponding to
the square of the length (or norm) of the respective projection vector of |ρ〉 onto |ei 〉.
For complex vector spaces one has to take the absolute square of the scalar product;
that is, fρ(|ei 〉) = |〈ei |ρ〉|2.

Pointedly stated, from this point of view the probabilities wρ(|ei 〉) are just the
(absolute) squares of the coordinates of a unit vector |ρ〉 with respect to some
orthonormal basis {|ei 〉}, representable by the square |〈ei |ρ〉|2 of the length of the
vector projections of |ρ〉 onto the basis vectors |ei 〉 – one might also say that each
orthonormal basis allows “a view” on the pure state |ρ〉. In two dimensions this is
illustrated for two bases in Fig. 12.18. The squares come in because the absolute val-
ues of the individual components do not add up to one; but their squares do. These
considerations apply to Hilbert spaces of any, including two, finite dimensions. In
this non-general, ad hoc sense the Born rule for a system in a pure state and an
elementary proposition observable (quantum encodable by a one-dimensional pro-
jection operator) can be motivated by the requirement of additivity for arbitrary finite
dimensional Hilbert space.
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|ρ〉

|e1〉

|f1〉

|e2〉

|f2〉

−|f2〉

|〈ρ|e1〉|

|〈ρ|e2〉|

|〈ρ|f1〉|

|〈ρ|f2〉|

Fig. 12.18 Different orthonormal bases {|e1〉, |e2〉} and {|f1〉, |f2〉} offer different “views” on
the pure state |ρ〉. As |ρ〉 is a unit vector it follows from the Pythagorean theorem that
|〈ρ|e1〉|2 + |〈ρ|e2〉|2 = |〈ρ|f1〉|2 + |〈ρ|f2〉|2 = 1, thereby motivating the use of the absolute value
(modulus) squared of the amplitude for quantum probabilities on pure states

12.9.9.1 Comparison of Classical and Quantum Form of Correlations

In what follows quantum configurations corresponding to the logics presented in the
earlier sections will be considered. All of them have quantum realizations in terms
of vectors spanning one-dimensional subspaces corresponding to the respective one-
dimensional projection operators.

The appendix contains a detailed derivation of two-particle correlation functions.
It turns out that, whereas on the singlet state the classical correlation function (B.1)
Ec,2,2(θ) = 2

π
θ − 1 is linear, the quantum correlations (B.11) and (B.23) are of the

“stronger” cosine form Eq,2 j+1,2(θ) ∝ − cos(θ). A stronger-than-quantum correla-
tion would be a sign function Es,2,2(θ) = sgn(θ − π/2) [321].

When translated into the most fundamental empirical level – to two clicks in
2× 2 = 4 respective detectors, a single click on each side – the resulting differences

ΔE = Ec,2,2(θ) − Eq,2 j+1,2(θ)

= −1 + 2

π
θ + cos θ = 2

π
θ +

∞∑

k=1

(−1)kθ2k

(2k)!
(12.53)

signify a critical difference with regards to the occurrence of joint events: both clas-
sical and quantum systems perform the same at the three points θ ∈ {0, π

2 ,π}. In
the region 0 < θ < π

2 , ΔE is strictly positive, indicating that quantum mechani-
cal systems “outperform” classical ones with regard to the production of unequal
pairs “+−” and “−+,” as compared to equal pairs “++” and “−−.” This gets
largest at θmax = arcsin(2/π) ≈ 0.69; at which point the differences amount to
38% of all such pairs, as compared to the classical correlations. Conversely, in the
region π

2 < θ < π, ΔE is strictly negative, indicating that quantum mechanical
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systems “outperform” classical ones with regard to the production of equal pairs
“++” and “−−,” as compared to unequal pairs “+−” and “−+.” This gets largest
at θmin = π − arcsin(2/π) ≈ 2.45. Stronger-than-quantum correlations [414, 415]
could be of a sign functional form Es,2,2(θ) = sgn(θ − π/2) [321].

In correlation experiments these differences are the reason for violations of
Boole’s (classical) conditions of possible experience. Therefore, it appears not
entirely unreasonable to speculate that the non-classical behaviour already is
expressed and reflected at the level of these two-particle correlations, and not in
need of any violations of the resulting inequalities.

12.9.10 Min-Max Principle

Violation of Boole’s (classical) conditions of possible experience by the quantum
probabilities, correlations and expectations are indications of some sort of non-
classicality; and are often interpreted as certification of quantum physics, and quan-
tum physical features [395, 540]. Therefore it is important to know the extent of such
violations; as well as the experimental configurations (if they exist [478]) for which
such violations reach a maximum.

The basis of the min-max method are two observations [212]:

1. Boole’s bounds are linear – indeed linearity is, according to Pitowsky [400], the
main finding of Boole with regards to conditions of possible (nowadays classi-
cal physical) experience [66, 67] – in the terms entering those bounds, such as
probabilities and nth order correlations or expectations.

2. All such terms, in particular, probabilities and nth order correlations or expec-
tations, have a quantum realization as self-adjoint transformations. As coherent
superpositions (linear sums and differences) of self-adjoint transformations are
again self-adjoint transformations (and thus normal operators), they are subject
to the spectral theorem. So, effectively, all those terms are “bundled together”
to give a single “comprehensive” (with respect to Boole’s conditions of possible
experience) observable.

3. The spectral theorem, when applied to self-adjoint transformations obtained from
substituting the quantum terms for the classical terms, yields an eigensystem con-
sisting of all (pure or non-pure) states, aswell as the associated eigenvalueswhich,
according to the quantum mechanical axioms, serve as the measurement out-
comes corresponding to the combined, bundled, “comprehensive,” observables.
(In the usual Einstein–Podolsky–Rosen “explosion type” setup these quantities
will be highly non-local.) The important observation is that this “comprehensive”
(with respect to Boole’s conditions of possible experience) observable encodes or
includes all possible one-by-one measurements on each one of the single terms
alone, at least insofar as they pertain to Boole’s conditions.
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4. By taking the minimal and the maximal eigenvalue in the spectral sum of this
comprehensive observable one therefore obtains the minimal and the maximal
measurement outcomes “reachable” by quantization.

Thereby, Boole’s conditions of possible experience are taken as given and for
granted; and the computational intractability of their hull problem [399] is of no
immediate concern, because nothing need to be said of actually finding those condi-
tions of possible experience, whose calculation may grow exponential with the num-
ber of vertices. Note also that there might be a possible confusion of the term “min-
max principle” [260, Sect. 90] with the term “maximal operator” [260, Sect. 84].
And finally, this is no attempt to compute general quantum ranges, as for instance
discussed by Pitowsky [396, 402, 406] and Tsirelson [141–143].

Indeed, functional analysis provides a technique to compute (maximal) viola-
tions of Boole–Bell type inequalities [213, 214]: the min-max principle, also known
as Courant–Fischer–Weyl min-max principle for self-adjoint transformations (cf.
Ref. [260, Sect. 90], Ref. [430, pp. 75ff], andRef. [528, Sect. 4.4, pp. 142ff]), or rather
an elementary consequence thereof: by the spectral theorem any bounded self-adjoint
linear operator T has a spectral decomposition T = ∑n

i=1 λiEi , in terms of the sum
of products of bounded eigenvalues times the associated orthogonal projection oper-
ators. Suppose for the sake of demonstration that the spectrum is non-degenerate.
Then we can (re)order the spectral sum so that λ1 ≥ λ2 ≥ · · · ≥ λn (in case the
eigenvalues are also negative, take their absolute value for the sort), and consider the
greatest eigenvalue.

In quantum mechanics the maximal eigenvalue of a self-adjoint linear operator
can be identified with the maximal value of an observation. Thereby, the spectral
theorem supplies even the state associated with this maximal eigenvalue λ1: it is
the eigenvector (linear subspace) |e1〉 associated with the orthogonal projector Ei =
|e1〉〈e1| occurring in the (re)ordered spectral sum of T.

With this in mind, computation of maximal violations of all the Boole–Bell type
inequalities associated with Boole’s (classical) conditions of possible experience is
straightforward:

1. take all terms containing probabilities, correlations or expectations and the
constant real-valued coefficients which are their multiplicative factors; thereby
excluding single constant numerical values O(1) (which could be written on “the
other” side of the inequality; resulting if what might look like “T (p1, . . . , pn,

p1,2, . . . , p123, . . .) ≤ O(1)” (usually, these inequalities, for reasons of opera-
tionalizability, as discussed earlier, do not include higher than 2rd order correla-
tions), and thereby define a function T ;

2. in the transition “quantization” step T → T substitute all classical prob-
abilities and correlations or expectations with the respective quantum self-
adjoint operators, such as for two spin- 12 particles enumerated in Eq. (B.6),
p1 → q1 = 1

2 [I2 ± σ(θ1,ϕ1)] ⊗ I2, p2 → q2 = 1
2 [I2 ± σ(θ2,ϕ2)] ⊗ I2,

p12 → q12 = 1
2 [I2 ± σ(θ1,ϕ1)] ⊗ 1

2 [I2 ± σ(θ2,ϕ2)], Ec → Eq = p12++ +
p12−− − p12+− − p12−+, as demanded by the inequality. Note that, since the
coefficients in T are all real-valued, and because (A+ B)† = A†+ B† = (A+ B)
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for arbitrary self-adjoint transformations A, B, the real-valued weighted sum T
of self-adjoint transformations is again self-adjoint.

3. Finally, compute the eigensystem of T; in particular the largest eigenvalue λmax

and the associated projector which, in the non-degenerate case, is the dyadic
product of the “maximal state” |emax〉, or Emax = |emax〉〈emax|.

4. In a last step, maximize λmax (and find the associated eigenvector |emax〉) with
respect to variations of the parameters incurred in step (ii).

The min-max method yields a feasible, constructive method to explore the quan-
tum bounds on Boole’s (classical) conditions of possible experience. Its application
to other situations is feasible. A generalization to higher-dimensional cases appears
tedious but with the help of automated formula manipulation straightforward.

12.9.10.1 Expectations from Quantum Bounds

The quantum expectation can be directly computed from spin state operators. For
spin- 12 particles, the relevant operator, normalized to eigenvalues ±1, is

T(θ1,ϕ1; θ2,ϕ2) =
[
2S 1

2
(θ1,ϕ1)

]
⊗
[
2S 1

2
(θ2,ϕ2)

]
. (12.54)

The eigenvalues are −1,−1, 1, 1 and 0; with eigenvectors for ϕ1 = ϕ2 = π
2 ,

(−e−i(θ1+θ2), 0, 0, 1
)ᵀ

,
(
0,−e−i(θ1−θ2), 1, 0

)ᵀ
,

(
e−i(θ1+θ2), 0, 0, 1

)ᵀ
,

(
0, e−i(θ1−θ2), 1, 0

)ᵀ
,

(12.55)

respectively.
If the states are restricted toBell basis states |Ψ ∓〉 = 1√

2
(|01〉 ∓ |10〉) and |Φ∓〉 =

1√
2
(|00〉 ∓ |11〉) and the respective projection operators are EΨ ∓ and EΦ∓ , then the

correlations, reduced to the projected operators EΨ ∓EEΨ ∓ and EΦ∓EEΦ∓ on those
states, yield extrema at− cos(θ1 −θ2) for EΨ − , cos(θ1 −θ2) for EΨ + ,− cos(θ1 +θ2)
for EΦ− , and cos(θ1 + θ2) for EΦ+ .

12.9.10.2 Quantum Bounds on the Clauser–Horne–Shimony–Holt
Inequalities

Theeaseof thismethod canbedemonstratedby (re)deriving theTsirelsonbound [141]
of 2

√
2 for the quantum expectations of the Clauser–Horne–Shimony–Holt inequal-

ities (12.32) (cf. Sect. 12.9.8.2), which compare to the classical bound 2. First note
that the two-particle projection operators along directions ϕ1 = ϕ2 = π

2 and θ1, θ2,
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as taken from Eqs. (B.6) and (B.3), are

q1,±1,2,±2

(
θ1,ϕ1 = π

2
, θ2,ϕ2 = π

2

)
=

= 1

2

[
I2 ± σ

(
θ1,

π

2

)]
⊗ 1

2

[
I2 ± σ

(
θ2,

π

2

)]
.

(12.56)

Adding these four orthogonal projection operators according to the parity of their
signatures ±1±2 yields the expectation value

Eq

(
θ1,ϕ1 = π

2
; θ2,ϕ2 = π

2

)
=

= Eq(θ1, θ2) = p1+2+ + p1−2− − p1+2− − p1−2+ =

=

⎛

⎜
⎜
⎝

0 0 0 e−i(θ1+θ2)

0 0 e−i(θ1−θ2) 0
0 ei(θ1−θ2) 0 0

ei(θ1+θ2) 0 0 0

⎞

⎟
⎟
⎠ .

(12.57)

Forming the Clauser–Horne–Shimony–Holt operator

CHSH(θ1, θ2, θ3, θ4) =
= Eq(θ1, θ3) + Eq(θ1, θ4) + Eq(θ2, θ3) − Eq(θ2, θ4).

(12.58)

The eigenvalues
λ1,2 = ∓2

√
1 − sin(θ1 − θ2) sin(θ3 − θ4),

λ3,4 = ∓2
√
1 + sin(θ1 − θ2) sin(θ3 − θ4),

(12.59)

for θ1 − θ2 = θ3 − θ4 = ± π
2 , yield the Tsirelson bounds ±2

√
2. In particular, for

θ1 = 0, θ2 = π
2 , θ3 = π

4 , θ4 = 3π
4 , Eq. (12.58) reduces to

⎛

⎜
⎜
⎝

0 0 0 −2i
√
2

0 0 0 0
0 0 0 0

2i
√
2 0 0 0

⎞

⎟
⎟
⎠ ; (12.60)

and the eigenvalues are λ1 = 0, λ2 = 0, λ3 = −2
√
2, λ4 = 2

√
2; with the associated

eigenstates (0, 0, 1, 0)ᵀ, (0, 1, 0, 0)ᵀ, (i, 0, 0, 1)ᵀ, (−i, 0, 0, 1)ᵀ, respectively. Note
that, by comparing the components [368, p. 18] the eigenvectors associated with the
eigenvalues reaching Tsirelson’s bound are entangled, as could have been expected.

If one is interested in the measurements “along” Bell states, then one has to
consider the projected operators EΨ ∓(CHSH)EΨ ∓ and EΦ∓(CHSH)EΦ∓ on those
states which yield extrema at
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λΨ ∓ = ∓[ cos(θ1 − θ3) + cos(θ2 − θ3)+
+ cos(θ1 − θ4) − cos(θ2 − θ4)

]
,

λΦ∓ = cos(θ1 + θ3) + cos(θ2 + θ3)+
+ cos(θ1 + θ4) − cos(θ2 + θ4).

(12.61)

For θ1 = 0, θ2 = π
2 , θ3 = π

4 , θ4 = − π
4 , cos(θ1+θ3) = cos(θ2+θ3) = cos(θ1+θ4) =

− cos(θ2 + θ4) = 1√
2
, and Eq. (12.61) yields the Tsirelson bound λΨ ∓ = ∓2

√
2.

Likewise, for θ1 = 0, θ2 = π
2 , θ3 = − π

4 , θ4 = π
4 , cos(θ1 + θ3) = cos(θ2 + θ3) =

cos(θ1 + θ4) = − cos(θ2 + θ4) = 1√
2
, and Eq. (12.61) yields the Tsirelson bound

λΦ∓ = ∓2
√
2.

Again it should be stressed that these violations might be seen as a “build-up;”
resulting from the multiple addition of correlations which they contain.

Note also that, only as single context can be measured on a single system, because
other context contain incompatible, complementary observables. However, as each
observable is supposed to have the same (counterfactual) measurement outcome in
any context, different contexts can be measured on different subensembles prepared
in the same state such that, with the assumptions made (in particular, existence
and context independence), Boole’s conditions of possible experience should be
valid for the averages over each subsensemble – regardless of whether they are co-
measurable or incompatible and complementary. (This is true for instance for models
with partition logics, such as generalized urn or finite automaton models.)

12.9.10.3 Quantum Bounds on the Pentagon

In a similar way two-particle correlations of a spin-one system can be defined by the
operator S1 introduced in Eq. (B.13)

A(θ1,ϕ1; θ2,ϕ2) = S1(θ1,ϕ1) ⊗ S1(θ2,ϕ2). (12.62)

Plugging in these correlations into the Klyachko–Can–Biniciogolu–Shumovsky
inequality [312] in Eq. (12.40) yields the Klyachko–Can–Biniciogolu–Shumovsky
operator

KCBS(θ1, . . . , θ5,ϕ1, . . . ,ϕ5) =
= A(θ1,ϕ1, θ3,ϕ3) + A(θ3,ϕ3, θ5,ϕ5) + A(θ5,ϕ5, θ7,ϕ7)+

+A(θ7,ϕ7, θ9,ϕ9) + A(θ9,ϕ9, θ1,ϕ1).

(12.63)

Taking the special values of Tkadlec [532], as enumerated in Cartesian coor-
dinates in Fig. 12.6, which, is spherical coordinates, are a1 = (

1, π
2 , 0

)ᵀ
, a2 =

(
1, π

2 , π
2

)ᵀ
, a3 = (

1, 0, π
2

)ᵀ
, a4 =

(√
2, π

2 ,− π
4

)ᵀ
, a5 =

(√
2, π

2 , π
4

)ᵀ
, a6 =

(√
6, tan−1

(
1√
2

)
,−π

4

)ᵀ
,a7 =

(√
3, tan−1

(√
2
)

, 3π
4

)ᵀ
,a8 =

(√
6, tan−1

(√
5
)

,
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tan−1
(
1
2

))ᵀ
, a9 =

(√
2, 3π

4 , π
2

)ᵀ
, a10 =

(√
2, π

4 , π
2

)ᵀ
, yields eigenvalues of

KCBS in
{− 2.49546, 2.2288,−1.93988, 1.93988,−1.33721,

1.33721,−0.285881, 0.285881, 0.266666
} (12.64)

all violating Eq. (12.40).

12.9.10.4 Quantum Bounds on the Cabello, Estebaranz
and García-Alcaine logic

As a final exercise we shall compute the quantum bounds on the Cabello, Este-
baranz and García-Alcaine logic [91, 96] which can be used in a parity proof of
the Kochen–Specker theorem in 4 dimensions, as depicted in Fig. 12.16 (where also
a representation of the atoms as vectors in R

4 suggested by Cabello [92, Fig. 1] is
enumerated), as well as the dichotomic observables [92, Eq. (2)]Ai = 2|ai 〉〈ai |− I4

is used. The observables are then “bundled” into the respective contexts to which
they belong; and the context summed according to the contextual inequalities from
the Hull computation (12.52), and introduced by Cabello [92, Eq. (1)]. As a result
(we use Cabello’s notation and not ours),

T = −A12 ⊗ A16 ⊗ A17 ⊗ A18

−A34 ⊗ A45 ⊗ A47 ⊗ A48 − A17 ⊗ A37 ⊗ A47 ⊗ A67

−A12 ⊗ A23 ⊗ A28 ⊗ A29 − A45 ⊗ A56 ⊗ A58 ⊗ A59

−A18 ⊗ A28 ⊗ A48 ⊗ A58 − A23 ⊗ A34 ⊗ A37 ⊗ A39

−A16 ⊗ A56 ⊗ A67 ⊗ A69 − A29 ⊗ A39 ⊗ A59 ⊗ A69

(12.65)

The resulting 44 = 256 eigenvalues of T have numerical approximations as ordered
numbers −6.94177 ≤ −6.67604 ≤ · · · ≤ 5.78503 ≤ 6.023, neither of which
violates the contextual inequality (12.52) and Ref. [92, Eq. (1)].

12.9.11 What Can Be Learned from These Brain Teasers?

When reading the book of Nature, she obviously tries to tell us something very
sublime yet simple; but what exactly is it? As mentioned earlier it seems that often
discussants approach this particular book not with evenly-suspended attention [224,
225] but with strong – even ideologic [144] or evangelical [589] – (pre)dispositions.
This might be one of the reasons why Specker called this area “haunted” [482]. With
these provisos we shall enter the discussion.



12.9 Quantum Probabilities 117

Already in 1935 – possibly based to the Born rule for computing quantum
probabilities which differ from classical probabilities on a global scale involving
complementary observables, and yet coincide within contexts – Schrödinger pointed
out (cf. also Pitowsky [400, footnote 2, p. 96]) that [539, p. 327] “at no moment does
there exist an ensemble of classical states of the model that squares with the totality
of quantum mechanical statements of this moment.”4 This seems to be the gist of
what can be learned from the quantum probabilities: they cannot be accommodated
entirely within a classical framework.

What can be positively said? Quantummechanics grant operational access merely
to a single context (block, maximal observable, orthonormal basis, Boolean subal-
gebra); and for all that operationally matters, all observables forming that context
can be simultaneously value definite. (It could formally be argued that an entire star
of contexts intertwined in a “true” proposition must be value definite, as depicted in
Fig. 12.15.) A single context represents the maximal information encodable into a
quantum system. This can be done by state preparation.

Beyond this single context one can get “views” on that single state in which
the quantized system has been prepared. But these “views” come at a price: value
indefiniteness. (Value indefiniteness is often expressed as “contextuality,” but this
view is distractive, as it suggests some existing entity which is changing its value;
depending on how – that is, along which context – it is measured.)

This situation might not be taken as a metaphysical conundrum, but perceived
rather Socratically: it should come as no surprise that intrinsic [500], emdedded [538]
observers have no access to all the information they subjectively desire, but only to
a limited amount of properties their system – be it a virtual or a physical universe –
is capable to express. Therefore there is no omniscience in the wider sense of “all
that observers want to know” but rather than “all that is operationally realizable.”

Anything beyond this narrow “local omniscience covering a single context” in
which the quantized system has been prepared appears to be a subjective illusion
which is only stochastically supported by the quantum formalism – in terms of
Gleason’s “projective views” on that single, value definite context. Experiments
may enquire about such value indefinite observables by “forcing” a measurement
upon a system not prepared or encoded to be “interrogated” in that way. However,
these “measurements” of non-existing properties, although seemingly possessing
viable outcomes which might be interpreted as referring to some alleged “hidden”
properties, cannot carry any (consistent classical) content pertaining to that system
alone.

To paraphrase a dictum by Peres [388], unprepared contexts do not exist; at least
not in any operationally meaningful way. If one nevertheless forces metaphysical
existence upon (value) indefinite, non-existing, physical entities the price, hedged
into the quantum formalism, is stochasticity.

4German original [452, p. 811]: “Es gibt in keinem Augenblick ein Kollektiv klassischer Model-
lzustände, auf das die Gesamtheit der quantenmechanischen Aussagen dieses Augenblicks zutrifft.”
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12.10 Quantum Mechanical Observer–Object Theory

The quantum measurement problem is at the heart of today’s quantum random num-
ber generators. Thus everybody relying on that technology has to be concerned
with this seemingly philosophical issues of observer-object relation. And anybody
denying its existence (aka Austin Powers’ “if you got an issue here’s a tissue”) is
tantamount to building a bridge with a new material whose properties and construc-
tion objectives are largely unknown – thereby relying on assurances of most experts
which are solely based on heuristics.

Presently the quantummechanical observer—object theory is a “canvaswithmany
facets and nuances.” There is no one accepted view of the measurement problem.
The Ansätze proposed include, but are not limited to

(I) collapse models: modification of quantummechanics by the inclusion of some
additional non-linear, irreversible transformation accounting for von Neu-
mann’s process 1, and possible also for the transformation of pure states into
mixed ones [226, 237, 238, 544].

(II) Exner-Schrödinger thesis: all laws; in particular, also the unitary time evolution
of the quantum state, have to be understood merely statistically, and are not
valid individually [209, 262, 451].

(III) Noncollapse Schrödinger-type quantum jellification without observation or
measurement: in Schrödinger’s own words [457, pp. 19,20], “He [[the quan-
tum physicist]] thinks that if the laws of nature took this [[von Neumann’s
Process 2, permutation]] form for, let me say, a quarter of an hour, we should
find our surroundings rapidly turning into a quagmire, or sort of a feature-
less jelly or plasma, all contours becoming blurred, we ourselves probably
becoming jelly fish. . . . nature is prevented from rapid jellification only by our
perceiving or observing it. And I wonder that he is not afraid, when he puts a
ten-pound-note {his wrist-watch} into his drawer in the evening, he might find
it dissolved in the morning, because he has not kept watching it.”

(IV) Non-collapse Everettian type relative state formalism [30, 33, 205, 206, 208,
544, 545]: Everett realized that, due to nesting, there cannot occur any kind
of irreversibility, but just the formation of entanglement. Entanglement in turn
induces relational properties between objects and observers (a the price of
individual properties of those parties). Given a pure state and a measurement
not compatible with it, the coherent superposition decomposition of the state
in terms of the eigenstates of the measurement operator all constitute a valid
observer (observing agent) who subjectively experiences the outcome of the
measurement as unique.Maybe Everett would have even granted observers the
capacity of being in a coherent superposition yet having the illusory subjective
experience of uniqueness; but this is highly speculative; as well as all further
interpretations of his writings in terms of splitting worlds theory [207].

(V) Non-collapse and intrinsic incompleteness: already von Neumann mentions
(and immediately discards this as a solution of the measurement problem) the
possibility that [554, Sect. 6.2, p. 426] “. . . the result of the measurement is



12.10 Quantum Mechanical Observer–Object Theory 119

indeterminate, because the state of the observer before the measurement is
not known exactly. It is conceivable that such a mechanism might function,
because the state of information of the observer regarding his own state could
have absolute limitations, by the laws of nature.”5 Breuer has discussed this
possibility in a series of papers [72–74]. This is not dissimilar to self-nesting,
as discussed in Sect. 1.8.

(VI) Non-collapse entanglement (zero sum scenario, excluding consciousness): the
extrinsic state representation of the combined object and observer system is
pure and entangled, while intrinsically both the observer and the object, mis-
takenly perceived individually, are in mixed states. This line of thought might
have been best expressed by London and Bauer [341, 342] who base their
presentation on von Neumann’s treatment of the measurement process [552,
Chap. VI] (echoed also in Everett’s [206] andWigner’s [571] papers). Related
ideas can be found in Schrödinger’s accounts on entanglement [452, 453, 455],
which in turn have been influenced by a (nowadays famous) paper by Einstein,
Podolsky and Rosen [196].

(i) Initial phase: this conceptualization of the measurement process starts with
the supposition that initially the entire system consists of two isolated
systems O and A, identifiedwith an object and themeasurement apparatus,
respectively. Initially, if the respective states are pure and denoted by |ψO〉
aswell as |ψA〉, then thewave function of the entire systemcanbe composed
from the individual parts by multiplication; that is, |ψO&A〉 = |ψO〉 ⊗
|ψA〉 = |ψOψA〉. In this initial phase the object as well as the measurement
apparatus are separated and know nothing about each other, their joint state
|ψO&A〉 being non-entangled and without any relational properties.
Suppose further, for the sake of simplicity, that both the object as well as the
measurement device have an equal number k of mutually exclusive states
|ψO,i 〉 as well as |ψA, j 〉, with 1 ≤ i, j ≤ k, respectively. The operator A
corresponding to the measurement device should have a spectral resolution
of E = ∑k

j=1 a j |ψA, j 〉〈ψA, j |.
(ii) Interaction phase: in order to obtain information about each other, both

object and the measurement apparatus have to interact with each other.
This interaction is supposed to be representable by a unitary transforma-
tion. During this interaction, the initial state |ψO&A〉 is transformed into a
coherent superposition, a sum of products of individual states of O and A,
so that the state after the interaction phase is |ψ′

O&A〉 = ∑k
i, j=1 ϕi j |ψO,i 〉⊗

|ψA, j 〉 = ∑k
i, j=1 ϕi j |ψO,iψA, j 〉. Preferably, in a measurement, states of the

measurement apparatus “should get aligned” with states of the object, such
that ϕi j ≈ δi jϕi i and |ψ′

O&A〉 ≈ ∑k
i=1 ϕi i |ψO,iψA,i 〉.

5German original [554, Sect. 6.3, p 233], “. . . das Resultat der Messung ist unbestimmt, weil der
Zustand des Beobachters vor der Messung nicht genau bekannt ist. Es wäre denkbar, da ein solcher
Mechanismus funktioniert, denn die Informiertheit des Beobachters über den eigenen Zustand
könnte naturgesetzliche Schranken haben.”

http://dx.doi.org/10.1007/978-3-319-70815-7_1
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This state |ψ′
O&A〉 will in generally not be factorizable as a non-entangled

product state of individual states of O and A. Suppose further that it is not
the case; that is, suppose that |ψO&A〉 is entangled.

(iii) interpretation phase: depending on our viewpoint, conventions and incli-
nations,
i. on the one hand, |ψO&A〉 can either be perceived from the outside – that

is, extrinsically – and thus appear as pure entangled state of the combined
system of object and the measurement apparatus, encoding relational
information (that is, statistical correlations) among these subsystems,
but lacking complete information of individual subsystems;

ii. or, on the other hand, from the intrinsic point of view of individual sub-
systems, |ψO&A〉 can be analysed in terms of the individual components
by forcing some type of individuality (e.g., by taking the partial trace
with respect to one subsystem) upon the subsystems. In the latter case of
individuality forcing, as the wave function lacks complete information
about the individual subsystems, the respective undefined subsystem
properties are value indefinite.
As a side effect of individuality forcing, entanglement is fapp destroyed,
and |ψ′

O&A〉 undergoes a change back to a non-entangled state |ψ′′
O&A〉,

subject to the relational information contained in |ψ′
O&A〉.

One may ask how individuality can be enforced upon |ψ′
O&A〉. This can

be done by context translation [505] (for related ideas see Refs. [333,
520]); that is, by “translating” or “transforming” a misaligned mea-
surement context into one which can be analysed, possibly by a third
measurement device. This translation process introduces stochastic-
ity through the (supposedly many) degrees of freedom of the outside
measurement apparatus. Thereby, context translation involves fapp irre-
versibility [348] for macroscopic measurement devices [202, 461]. Yet
in principle the chaining or nesting of measurements results in a (poten-
tially infinite) regress.
If there is a regress, when does it stop? This can be answered by con-
sidering the smallest isolated system encompassing the original object
O as well as the measurement apparatus A. Already Baumann [37]
and Zeh [586] have pointed out that, strictly speaking, because of the
high density of energy niveaus in macroscopic systems, the interactions
between macroscopic systems are effective even at astronomical dis-
tances. Therefore these systems are exceedingly difficult to isolate; and
any system which includes all (nested) observers would encompass the
universe as a whole.

Most importantly, whatever the measurement outcome of measurements on
individual parts of the entangled object–measurement apparatus system, this
cannot correspond to some pre-existing, definite value solely residing within
the bounds of the observed object, because the information encoded in the
entangled state is (also, and in the extreme case solely and exclusively) in the
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relational properties of its constituent parts; and not about the individual states
of these constituents. Therefore, if one forces individuality, one has to add
additional information from the environment, in particular, the measurement
apparatus, which is not present in the original state.
The author is inclined to adopt this view of the measurement process – it is just
like zooming in and out of the situation: if one looks at it from an extrinsic,
outside, disentangled perspective (if one can afford such a view) – that is, as
an isolated holistic system including the observer and the object, as well as
the cut between them, the system is in a pure, well-defined state. However, if
one “zooms into” this system, and takes an embedded, intrinsic point of view,
then the individual constituents of the system – in particular, the object as well
as the observer – are underdefined and value definite. “Forcing individuality”
upon these constituents requires additional input from the environment (via
context translation), thereby introducing auxiliary bits which do not reflect any
property of those constituents.

(VII) consciousness causes state reduction: this scenario is identical to the previ-
ous one but employs nesting until the level of consciousness of the observer.
At this level, awareness by consciousness is then assumed to be essentially
irreversible. That is, it is assumed that one cannot “unthink” the perception
of a measurement. This point of view has been suggested by London and
Bauer [341, 342] as well as Wigner [571]; although the latter one may have
developed a different stance on this subject later [203]. For a critical discussion,
see Ref. [582].

12.11 Observer-Objects “Riding” on the Same State Vector

What does it mean “to ride on a particular section” of a vector in high dimensional
Hilbert space?Can two such sectors of one and the samevector constitute an observer-
object system? Where is the cut, the interface between those sections?

We suggest here that indeed itmight fapp be possible tomake a distinction between
observer and object; where both parties “ride” the same state. This distinction is
formally specified by Everett’s relative states; that is, it involves entangled states.

12.12 Metaphysical Status of Quantum Value Indefiniteness

What does it mean that a particular (quantum) entity is value indefinite? It means
that relative to, or with respect to, a particular physical resource or physical means,
the respective entity cannot be entirely, that is, completely and totally, defined. In
short: any proposition about physical value indefiniteness is means relative.
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If such an entity is “observed” nevertheless, then this “observation” must neces-
sarily introduce, add, input, and include, other specifications “outside” of the object.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Chapter 13
Quantum Oracles

There are many accounts of the roots of quantum indeterminism. Take, for instance,
Vaidman’s recent review [544], leaning toward deterministic ontology.

In any case, in 1926, Born [570, p. 54] suggested that “from the standpoint of our
quantum mechanics, there is no quantity which in any individual case causally fixes
the consequence of the collision; but also experimentally we have so far no reason
to believe that there are some inner properties of the atom which condition a definite
outcome for the collision. Ought we to hope later to discover such properties . . .
and determine them in individual cases? Or ought we to believe that the agreement
of theory and experiment – as to the impossibility of prescribing conditions? . . . I
myself am inclined to give up determinism in the world of atoms.”1

A quantum mechanical gap of casuality can be realized by a half-silvered mir-
ror [292, 484, 498], with a 50:50 chance of transmission and reflection, as depicted
in Fig. 13.1. A gap certified by quantum value indefiniteness necessarily has to oper-
ate with more than two exclusive outcomes [5]. Reference [3] presents such a qutrit
configuration.

One may object to the orthodox view [589] of quantum indeterminism by point-
ing out that it is merely based on a belief without proof. It is not at all clear where
exactly the randomness generated by a half-silvered mirror resides; that is, where the
stochasticity comes from, and what are its origin. (Often vacuum fluctuations origi-
nating from the second, empty, input port are mentioned, but, pointedly stated [236,
p. 249], these “mysterious vacuum fluctuations . . . may be regarded as sugar coating
for the bitter pill of quantum theory.”)

1German original [68, p. 866]: “Vom Standpunkt unserer Quantenmeehanik gibt es keine Größe, die
im Einzelfalle den Effekt eines Stoßes kausal festlegt; aber auch in der Erfahrnng haben wir bisher
keinen Anhaltspunkt dafür, daß es innere Eigensehaften der Atome gibt, die einen bestimmten
Stoßerfolg bedingen. Sollen wir hoffen, später solche Eigenschaften (etwa Phasen der inneren
Atombewegungen) zu entdecken und im Einzelfalle zu bestimmen? Oder sollen wir glauben, daß
die Übereinstimmung von Theorie und Erfahrung in der Unfähigkeit, Bedingungen für den kausalen
Ablauf anzugeben, eine prästabilierte Harmonie ist, die auf der Nichtexistenz solcher Bedingungen
beruht? Ich selber neige dazu, die Determiniertheit in der atomaren Welt aufzugeben.”

© The Author(s) 2018
K. Svozil, Physical (A)Causality, Fundamental Theories of Physics 192,
https://doi.org/10.1007/978-3-319-70815-7_13
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Fig. 13.1 (Colour online) A gap created by a quantum coin toss. A single quantum (symbolized
by a black circle from a source (left crossed circle) impinges on a semi-transparent mirror (dashed
line), where it is reflected and transmitted with a 50:50 chance. The two final states are indicated
by grey circles. The exit ports of the mirror can be coded by 0 and 1, respectively

More generally, any irreversible measurement process, and, in particular, any
associated ‘collapse,’ or, by another denomination, ‘reduction’ of the quantum state
(or the wave function) to the post-measurement state is a postulate which appears to
be means relative in the following sense.

The beam splitter setup is not irreversible at all because a 50:50 mirror has a
quantum mechanical representation as a permutation of the state, such as a unitary
Hadamard transformation; that is, with regard to the quantum state evolution the beam
splitter acts totally deterministic; it can be represented by a one-to-one function, a
permutation. (Experimentally, this can be demonstrated by serially concatenating
two such 50:50 mirrors so that the output ports of the first mirror are the input
ports of the second mirror. The result (modulo an overall phase) is a Mach–Zehnder
interferometer reconstructing the original quantum state.)

Formally – that is, within quantum theory proper, augmented by the prevalent
orthodox ‘Copenhagen-type’ interpretation – it is not too difficult to locate the origin
of randomness at the beam splitter configuration: it is

(i) the possibility that a quantum state can be in a coherent superposition of
classically distinct and mutually exclusive (outcome or scattering) states of a single
quantum; and

(ii) the possibility that an irreversible measurement ad hoc and ex nihilo stochas-
tically ‘chooses’ or ‘selects’ one of these classically mutually exclusive properties,
associated with a measurement outcome. This, according to the orthodox interpre-
tation of quantum mechanics, is an irreducible indeterministic many-to-one process
– it transforms the coherent superposition of a multitude of (classically distinct)
properties into a single, classical property. This latter assumption (ii) is sometimes
referred to as the reduction postulate.

Already Schrödinger has expressed his dissatisfaction with both assumptions (i)
and (ii), and, in particular, with the quantum mechanical concept of ontological
existence of coherent superposition, in various forms at various stages of his life: he
polemicized against the uncritical perception of the quantum formalism (i) by quoting
the burlesque situation of a cat which is supposed to be in a coherent superposition
between death and life [452]. He also noted the curious fact that, as a consequence of
(i) and in the absence of measurement and state reduction (ii), according to quantum
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mechanics we all (as well as the physical universe in general), would become quantum
jelly [457].

What in the orthodox scriptures of quantum mechanics often is referred to as “irre-
versible measurement” remains conceptually unclear, and is inconsistent with other
parts of quantum theory. Indeed, it is not even clear that, ontologically, an irreversible
measurement exists! Wigner [571] and, in particular, Everett [206, 208] put forward
ontologic arguments against irreversible measurements by extending the cut between
a quantum object and the classical measurement apparatus to include both object as
well as the measurement apparatus in a uniform quantum description. As this latter
situation is described by a permutation (i.e. by a unitary transformation), irreversibil-
ity, and what constitutes ‘measurement’ is lost. Indeed, the reduction postulate (ii)
and the uniform unitarity of the quantum evolution cannot both be true, because the
former essentially yields a many-to-one mapping of states, whereas uniform unitarity
merely amounts to a one-to-one mapping, that is, a permutation, of states. In no way
can a many-to-one mapping ‘emerge’ from any sort of concatenation of one-to-one
mappings! Stated differently, according to the reduction postulate (ii), information
is lost; whereas, according to the unitary state evolution, no information is ever lost.
So, one of these postulates must be ontologically wrong (they may be epistemically
justified for all practical purposes [44], though). In view of this situation, I am (to
use Born’s dictum [68, p. 866]) inclined to give up the reduction postulate disrupting
permutativity, and, in particular, unitarity, in the world of single quantum phenomena,
in favour of the latter; that is, in favour of permutativity, and, in particular, unitarity.

The effort to do so may be high, as detailed beam recombination analysis of a
Stern–Gerlach device (the spin analogue of a beam splitter in the Mach–Zehnder
interferometer) shows [202, 461]. Nonetheless, experiments (and proposals) to
“undo” quantum measurements abound [137, 252, 275, 323, 389, 394, 462, 463,
585]. Thus we could say that for all practical purposes [43], that is, relative to the
physical means [375] available to resolve the huge number of degrees of freedom
involving a macroscopic measurement apparatus, measurements appear to be irre-
versible, but a close inspection reveals that they are not. So, irreversibility of quantum
measurements appears to be epistemic and means relative, subjective and conven-
tional; but not ontic. (As already argued by Maxwell, this is just the same for the
second law of thermodynamics [375].)
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Chapter 14
Vacuum Fluctuations

As stated by Milonni [370, p. xiii] and emphasized by others [174, 195], “. . . there is
no vacuum in the ordinary sense of tranquil nothingness. There is insteadafluctuating
quantumvacuum.”One of the observable vacuum effects is the spontaneous emission
of radiation [565]: “. . . the process of spontaneous emission of radiation is one in
which “particles” are actually created. Before the event, it consists of an excited
atom, whereas after the event, it consists of an atom in a state of lower energy, plus
a photon.”

Recent experiments achieve single photon production by spontaneous emis-
sion [87, 308, 322, 441, 486], for instance by electroluminescence. Indeed, most of
the visible light emitted by the sun or other sources of blackbody radiation, including
incandescent bulbs, is due to spontaneous emissions [370, p. 78].

Just as in the beam splitter case discussed earlier the quantum (field theoretic)
formalism can be used to compute (scattering) probabilities – that is, expectations
for occurrences of individual events, or mean frequencies for large groups of quanta –
but remains silent for single outcomes.

Alas, also in the quantum field theoretic case, unitarity, and thus permutations,
govern the state evolution. Thus, for similar reasons mentioned earlier – mainly the
uniformity of the validity of unitary quantum evolutions – the ontological status of
indeterminism remains uncertain.

If we follow the quantum canon, any such emission is an irreducible, genuine
instance of creation coming from nothing (ex nihilo); more precisely, in theological
terms, the spontaneous emission of light and other particles amounts to an instance
of creatio continua. (This is also true for the stimulated emission of a quantum.)

A (fapp postulated) gap of determinism based on vacuum fluctuations is schemat-
ically depicted in Fig. 14.1. It consists of an atom in an excited state, which transits
into a state of lower energy, thereby producing a photon. The photon (non-)creation
can be coded by the symbols 0 and 1, respectively.

© The Author(s) 2018
K. Svozil, Physical (A)Causality, Fundamental Theories of Physics 192,
https://doi.org/10.1007/978-3-319-70815-7_14
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Fig. 14.1 A gap created by
the spontaneous creation of a
photon

It might not be too unreasonable to speculate that all gap scenarios, including
spontaneous symmetry breaking and quantum oracles, are ultimately based on vac-
uum fluctuations.
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Chapter 15
Radioactivive Decay

Egon von Schweidler, a colleague of Exner at the University of Vienna, inter-
preted Rutherford’s (1902) decay law as merely probabilistically – thereby allowing
deviations for small sample sizes [459]. Exner, a staunch indeterminist [209], might
have convinced both Schweidler and Schrödinger that single decay processes occur
irreducibly random, and that they had to give up determinism in the world of atoms
(cf. Sect. 9.2, p. 40) [82, 217, 262, 490, 491]. For a review an early attempts to
“explain” radioactivity, see Refs. [318, 319]
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Part IV
Exotic Unknowns



Chapter 16
Classical Continua and Infinities

The physical theories of classical mechanics, electrodynamics and gravitation (rela-
tivity theory) have been developed alongside classical analysis. Thereby assumptions
about the formal mathematical models for theoretical physics had to be made which
were partly (to some degree of accuracy) corroborated empirically; and partly a mere
convenience.

In particular, classical continuum physics employed mathematical objects – the
continuum of real and complex numbers – which, from a logical, recursion theoretic,
and algorithmic point of view, has turned out to be highly nontrivial, to say the least.
For instance, as is argued in the Appendix A, with probability one, an arbitrary real
number turns out to be incomputable, and even algorithmically incompressible – that
is, random. Stated differently, almost all elements of a continuum are not attainable
by any operational physical process. They require unlimited (in terms of computation
space, time et cetera) resources.

When contemplating the use of nonconstructive means for physical models, two
questions are imminent:

(i) Are these nonconstructive continuum models a faithful representation of the
physical systems in the sense that they do not underrepresent – that is, do they
systems? include and comprise essential operational features of these physical
systems.

(ii) Are these nonconstructive continuum models a faithful representation of the
physical systems in the sense that they do not overrepresent; that is, that they
do not introduce entities, properties, capacities and features which have no cor-
respondence in the empirical data? If they allege and suggest capacities – such
as irreducible randomness and computability beyond the universal Turing-type
– can these capacities be utilized and (technologically) harvested for “super-
tasks” [53, 187, 188, 188, 352, 530] which go beyond the finite capacities
usually ascribed to physical systems?

(iii) What kind of verification, if any at all, can be given for nonconstructive means?
The term “(non)constructive” is used here in its metamathematical meaning [63,
77, 78, 354].
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Pointedly stated, if some theory is the double of some physical system (or vice
versa [21]) we have to differentiate between properties of the theory and properties
of the physical system. And we have to make sure that we do not over-represent
physical facts by formalisms which contain elements which have no correspondence
to the former. Because if we are not careful enough we fall pray of Jaynes’ Mind
Projection Fallacy mentioned in Sect. 9.5 (p. 42).

Another issue is the applicability of mathematical models or methods which some-
how implicity or explicitly rely on infinities. For instance, Cantor’s diagonalization
technique which is often used to prove the undenumerability of the real unit inter-
val relies on an infinite process [79] which is nonoperational. Again the issue of
supertasks mentioned earlier arises. It may not be totally unjustified to consider
the question of whether or not theoretical physics should allow for such infinities
unsettled. The issue has been raised already by Eleatic philosophy [253, 331, 440],
and may be with us forever.
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Chapter 17
Classical (In)Determinism

Rather than giving a detailed account on the origin and varieties of classical deter-
minism – which is a fascinating topic of its own [185, 186, 255, 282, 494, 495, 566]
– a very brief sketch of some of its concepts will be given.

17.1 Principle of Sufficient Reason and the Law of
Continuity

The principle of sufficient reason states that [495] “a thing cannot come to existence
without a cause which produces it . . . that for everything that happens there must be
a reason which determines why it is thus and not otherwise.”

This principle is related to another one which, in Diderot’s Encyclopédie ou Dic-
tionnaire raisonné des sciences, des arts et des métiers, has been discussed as fol-
lows [218]: “The law of continuity is a principle that we owe to Mr. Leibniz, which
informs us that nothing jumps in nature and that one thing cannot pass from one
state to another without passing through all the other states that can be conceived of
between them. This law issues, according to Mr. Leibniz, from the axiom of sufficient
reason. Here is the deduction. Every state in which a being finds itself must possess
sufficient reason why this body finds itself in this state rather than in any other state;
and this reason can only be found in its prior state. The prior state therefore contained
something which gave birth to the actual state which it followed, and in such a way
that these two states are so bound that it is impossible to place another in between
them, for if there was a state between the actual state and that which immediately
preceded it, nature would have left the first state even before it had been determined
by the second to abandon the first; thus there would be no sufficient reason why it
would sooner proceed to this state than to another.”
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Note that irreversible many-to-one evolution is not excluded in this scheme,
because in principle it is possible that many different states may evolve into a single
one state; very much like the square function f (x) = x2 maps both, say, x = ±2
into 4. If we interpret these concepts algorithmically and in terms of an evolution
which amounts to a one-to-one permutation, then we arrive at a sort of hermetic and
closed “clockwork universe” or virtual reality in which everything that happens is
pre-determined by its past state, and ultimately by its initial state.

17.2 Possible Definition of Indeterminism by Negation

First of all it should be stated up-front that, as is always the case in formalizations,
the following definitions and discussions merely apply tomodels of physical systems,
and not to the physical systems themselves. Furthermore, indeterminism is just the
absence or even negation of determinism.

17.3 Unique State Evolution

Determinism can be informally but very generally defined by the property that [382,
Chapter on Indeterministic Physical Systems] “the fixing of one aspect of the system
fixes some other. . . . In a (temporally) deterministic physical system, the present
state of the system determines its future states”. Alternatively one may say that the
present determines both past and future [566]: “determinism reigns when the state
of the system at one time fixes the past and future evolution of the system.”. Here
uniqueness plays a crucial role: deterministic systems evolve uniquely. If the past
is also assumed to be determined by the present, then this amounts to an injective
(one-to-one) state evolution; that is, essentially to a permutation of the state.

In classical continuum physics ordinary differential equations are a means to
express the dynamics of a system. Thus determinism could formally be defined in
terms of unique solutions of differential equations. In this approach determinism is
essentially reduced to the purely mathematical question regarding the uniqueness of
the solution of a differential equation.

According to the Picard–Lindelöf theorem an initial value problem (also called
the Cauchy problem) defined by a first order ordinary differential equation of the
form y′(t) = f (t, y(t)) and the initial value y(t0) = y0 has a unique solution if f
satisfies the Lipschitz condition and is continuous as a function of t .

A mapping f satisfies (global/local) Lipschitz continuity (or, used synonymously,
Lipschitz condition) with finite positive constant 0 < k < ∞ if it increases the
distance between any two points y1 and y2 (of its entire domain/some neighbourhood)
by a factor at most k [20, Sect. 4.3, p. 272]:

| f (t, y2) − f (t, y1)| ≤ k|y2 − y1|. (17.1)
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That is, f may be nonlinear as long as it does not separate different points “too
much.” f must lie within the “outward cone” spanned by the two straight lines with
slopes ±k.

An initial value problem defined by a second order linear ordinary differential
equation of the form y′′(t)+a1(t)y′(t)+a0(t)y = b(t) and the initial values y(t0) =
y0 and y′(t0) = y1 has a unique solution if the functions a1, a0 and b are continuous.

Systems of higher order ordinary differential equations which are normal are
equivalent to first order normal systems of ordinary differential equations [61, The-
orem 4, p. 180]. Therefore, uniqueness criteria of such higher order normal systems
can be reduced to uniqueness criteria for first-order ordinary differential equations,
which is essentially Lipschitz continuity.

17.4 Nonunique Evolution Without Lipschitz Continuity

There are other definitions of determinism via ordinary differential equations which
(mostly implicitly) do not requiring Lipschitz continuity. Consequently (weak) solu-
tions may exist, which may result in nonunique solutions.

The history of determinism abounds in proposals for indeterminism by nonunique
solutions to ordinary differential equations. These proposals, if they are formalized,
are mostly “exotic” in the sense that they do not satisfy the criteria for uniqueness of
solutions mentioned earlier.

There are a plethora of such “examples of indeterminism in classical mechanics;”
in particular, discussed by Poisson in 1806, Duhamel in 1845, Bertrand in 1878, and
Boussinesq in 1879 [162, 494].

In 1873, Maxwell identified a certain kind of instability at singular points as
rendering a gap in the natural laws [359, pp. 440]: “. . . when an infinitely small
variation in the present state may bring about a finite difference in the state of the
system in a finite time, the condition of the system is said to be unstable. It is manifest
that the existence of unstable conditions renders impossible the prediction of future
events, if our knowledge of the present state is only approximate, and not accurate.”

Figure 17.1 (see also Frank’s Fig. 1 in Chap. III, Sect. 13) depicts a one dimensional
gap configuration envisioned by Maxwell [359, p. 443]: a “rock loosed by frost and
balanced on a singular point of the mountain-side, . . . .” On top, the rock is in perfect
balanced symmetry. A small perturbation or fluctuation causes this symmetry to be
broken, thereby pushing the rock either to the left or to the right hand side of the
potential divide. This dichotomic alternative can be coded by 0 and by 1, respectively.

One may object to this scenario of spontaneous symmetry breaking for physical
reasons; that is, by maintaining that, if indeed the symmetry is perfect, there is no
movement, and the particle or rock stays on top of the tip (potential).

However, any slightest movement – either through a microscopic asymmetry or
imbalance of the particle, or from fluctuations of any form, either in the particle’s
position due to quantum zero point fluctuations, or by the surrounding environment
of the particle – might topple the particle over the tip; thereby spoiling the original
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Fig. 17.1 (Color online) A gap created by a black particle sitting on top of a potential well. The
two final states are indicated by grey circles. Their positions can be coded by 0 and 1, respectively

symmetry. For instance, any collision of gas molecules with the rock may push the
latter over the edge by thermal fluctuations.

Maxwell’s scenario resembles Norton’s dome [159, 216, 329, 379, 566], and
a similar configuration studied already by Boussinesq in 1879 [494, pp. 176–178]
which violates Lipschitz continuity: The ordinary differential equation of motion (for
its derivation and motivation, we refer to the literature) associated with the Norton
dome is given by

y′′ = √
y. (17.2)

It can be readily verified by insertion that (17.2) has two solutions, namely (i) a trivial
one y1(t) = 0 for all times t , and (ii) a weak solution which can be interpreted as
distribution: y2(t) = 1

144 (t − T )4H(t − T ), where H symbolizes the (Heaviside)
unit step function. Note that the left hand side of (17.2) needs to be interpreted as a
generalized function (or distribution); that is, as a linear functional integrated over a
test function ϕ which in this case could be 1):

y2(t)[ϕ] =
{

1

144
(t − T )4H(t − T )

}
[ϕ],

y′
2(t)[ϕ] =

{
1

36
(t − T )3H(t − T )

}
[ϕ] +

{
1

144
(t − T )4δ(t − T )

}
[ϕ]

=
{

1

36
(t − T )3H(t − T )

}
[ϕ],

y′′
2 (t)[ϕ] =

{
1

12
(t − T )2H(t − T )

}
[ϕ] +

{
1

36
(t − T )3δ(t − T )

}
[ϕ]

=
{

1

12
(t − T )2H(t − T )

}
[ϕ].

(17.3)

The right hand side of Eq. (17.2) contains the square root of this distribution, in par-
ticular the square root of the unit step function. One way of interpretation would be in
terms of theta-sequences such as H(x) = limε→0 Hε(x) = limε→0

[
1
2 + 1

π
tan−1 x

ε

]
.

The square root of the unit step function could also be understood in terms of

Colombeau theory [149]; or one might just define
{

1
144 (t − T )4H(t − T )

} 1
2 to be{

1
12 (t − T )2H(t − T )

}
.
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Colombeau theory provides another rich source of pseudo-indeterminism [150]
as it deals with situations in which “tiny micro-irregularities” are “mollified” and
“blown up” to “macro-scales” [9, 28].

The Picard–Lindelöf theorem, which applies for first-order ordinary differential
equations, cannot be directly applied to this second order ordinary differential equa-
tion. Therefore we have to use the aforementioned method of conversion of a higher
order ordinary differential equation into systems of first order ordinary differential
equations [140, Sect. II.D, pp. 94–96]. Suppose the initial value (or Cauchy) problem
is

y′′(t) = f (t, y(t), y′(t)) with y(t0) = a0 and y′(t0) = a1. (17.4)

This equation can be rewritten into a coupled pair of equation, with v = y′:

y′ = v, v ′ = f (t, y, v) with y(t0) = a0 and v(t0) = a1. (17.5)

The only modification for the Lipschitz condition is that instead of the absolute value
of the numerical difference we have to use the difference in the plane

‖(y, v) − (z, w)‖ = (
(y − z)2 + (v − w)2) 1

2 . (17.6)

For the rewritten Picard–Lindelöf theorem we have to assume that f (t, y, v) is con-
tinuous as a function of t , and that the modified Lipschitz condition holds: for finite
positive constant 0 < k < ∞,

| f (t, y, v) − f (t, z, w)| ≤ k‖(y, v) − (z, w)‖. (17.7)

A generalization to higher orders is straightforward.
In the Norton dome case, f (t, y, v) is identified with y

1
2 . This function does not

satisfy the Lipschitz condition for y = 0, as its slope is d f
dy = 1

2 y
− 1

2 which diverges

for y = 0; hence no finite bound k exists at that point: f (t, y, v) = y
1
2 grows “too

fast” for y approaching 0.
Similar considerations apply to other configurations violating Lipschitz continu-

ity [216, 494].
There are other instances of classical determinism, all involving infinities of some

sorts [382, Chapter on Indeterministic Physical Systems]. Neither shall be mentioned
nor discuss here.
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Chapter 18
Deterministic Chaos

Classical physics, in particular, classical Newtonian mechanics, can be perceived as
being modelled by systems of simultaneous differential equations of second order,
for which the initial values of the variables and their derivatives are known. It slowly
dawned on the mathematical physicists that the solutions, even if they satisfied Lip-
schitz continuity and thus were unique, could have a huge variety of solutions; with
huge structural differences. Some of these solutions turned out to be unstable [256]:
not always “a small error in the data only introduces a small error in the result” [359,
pp. 442] (see also [162]).

18.1 Sensitivity to Changes of Initial Value

What is presently known as deterministic chaos [387, 458] – a term which is a
contradictio in adjecto, an oxymoron of sorts – has a long and intriguing history,
not without twists, raptures and surprises [170, 171]. As has been mentioned earlier
(see Sect. 17.4 on p. 137) already Maxwell hinted on physical situations in which
very tiny variations or disturbances of the state could get attenuated tremendously,
resulting in huge variations in the evolution of the system. In an epistemic sense, this
might make prediction and forecasting an extremely difficult, if not impossible task.

The idea is rather simple: the term “deterministic” refers to the state evolution –
often a first-order, nonlinear difference equation [360] – which is “deterministic” in
the sense that the past state determines the future state uniquely. This state evolution
is capable of “unfolding” the information contained in the initial state.

The second term “chaos” or “chaotic” refers to a situation in which the algo-
rithmic information of the initial value is “revealed” throughout evolution. Thereby,
“true” irreducible chaos rests on the assumption of the continuum, and the pos-
sibility to “grab” or take (supposedly random with probability 1; cf. Sect. A.2 on
p. 171) one element from the continuum, and recover the (in the limit algorithmically
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incompressible) “information” contained therein. That is, if the initial value is com-
putable – that is neither incomputable nor random – then the evolution is not chaotic
but merely sensitive to the computable initial value.

The question of whether physical initial values are computable or incomputable
or even random (in the formal sense discussed in the Appendix A) is a nonoperational
assumption and thusmetaphysical.Very pointedly stated,with regards to the ontology
and the type of randomness involved, deterministic chaos is sort of “garbage-in,
garbage-out processes.”

Inwhatmaybe considered as the beginningof deterministic chaos theory, Poincaré
was forced to accept a gradual, that is epistemic (albeit not an ontologic in principle),
departure from the deterministic position: sometimes small variations in the initial
state of the bodies could lead to huge variations in their evolution at later times. In
Poincaré’s own words [413, Chap. 4, Sect. II, pp. 56–57], “If we would know the
laws of Nature and the state of the Universe precisely for a certain time, we would be
able to predict with certainty the state of the Universe for any later time. But [[ . . . ]]
it can be the case that small differences in the initial values produce great differences
in the later phenomena; a small error in the former may result in a large error in the
latter. The prediction becomes impossible and we have a ‘random phenomenon.’ ”
See also Maxwell’ observation of a metastabile state at singular points discussed in
Sect. 17.4 earlier.

18.2 Symbolic Dynamics of the Logistic Shift Map

Symbolic dynamics [27, 310, 339] and ergodic theory [153, 192, 393] has identified
thePoincarémap near a homocyclic orbit, the horseshoemap [470], and the shift map
as equivalent origins of classical deterministic chaoticmotion, which is characterized
by a computable evolution law and the sensitivity and instability with respect to
variations of the initial value [15, 338, 465].

This scenario can be demonstrated by considering the shift map σ as it pushes up
“dormant” information residing in the successive bits of the initial state represented
by the sequence s = 0.(bit 1)(bit 2)(bit 3) · · · , thereby truncating the bits before the
comma:

σ(s) = 0.(bit 2)(bit 3)(bit 4) · · · ,
σ(σ(s)) = 0.(bit 3)(bit 4)(bit 5) · · · ,

σ(σ(σ(s))) = 0.(bit 4)(bit 5)(bit 6) · · · ,
...

(18.1)

Suppose a measurement device operates with a precision of, say, two bits after the
comma, indicated by a two bit window ofmeasurability; thus initially all information
beyond the secondbit after the comma is hidden to the experimenter.Consider two ini-
tial states s = [0.(bit 1)(bit 2)](bit 3) · · · and s ′ = [0.(bit 1)(bit 2)](bit 3)′ · · · , where

http://dx.doi.org/10.1007/978-3-319-70815-7_17
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the square brackets indicate the boundaries of the window of measurability (two bits
in this case). Initially, as the representations of both states start with the same two bits
after the comma [0.(bit 1)(bit 2)], these states appear operationally identical and can-
not be discriminated experimentally. Suppose further that, after the second bit, when
compared, the successive bits (bit i) and (bit i)′ in both state representations at identi-
cal positions i = 3, 4, . . . are totally independent anduncorrelated.After just two iter-
ations of the shift mapσ, s and s ′ may result in totally different, diverging observables
σ(σ(s)) = [0.(bit 3)(bit 4)](bit 5) · · · and σ(σ(s ′)) = [0.(bit 3)′(bit 4)′](bit 5)′ · · · .

Suppose, as has been mentioned earlier, that the initial values are presumed, that
is, hypothesized as chosen uniformly from the elements of a continuum, then almost
all (that is, of measure one) of them are not representable by any algorithmically
compressible number; in short, they are random (Sect. A.2 on p. 171).

Thus in this scenario of classical, deterministic chaos the randomness resides
in the assumption of the continuum; an assumption which might be considered a
convenience (for instance, for the sake of applying the infinitesimal calculus). Yet
no convincing physically operational evidence supporting the necessity of the full
structure of continua can be given. If the continuum assumption is dropped, then
what remains is Maxwell’s and Poincaré’s observation of the unpredictability of the
behaviour of a deterministic system due to instabilities and diverging evolutions from
almost identical initial states [349].

18.3 Algorithmic Incomputability of Series Solutions
of the n-Body Problem

There exist series solutions of the n-body problem [496, 560, 561]. From determin-
istic chaos theory – that is, from the great sensibility to changes in the initial values
– it should be quite clear that the convergence of these series solutions could be
extremely slow [170, 171].

However, one could go one step further and argue that, at least for systems capable
of universal computation, in general there need not exist any computable criterion
of convergence of these series [477]. This can be achieved by embedding a model of
(ballistic) universal computation into an n-body system [510].
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Chapter 19
Partition Logics, Finite Automata
and Generalized Urn Models

19.1 Modelling Complementarity by Finite Partitions

Complementarity was first encountered in quantum mechanics. It is a phenomenon
also understandable in classical terms; and although “it’s not a complicated idea
but it’s an idea that nobody would ever think of” in analogy to entanglement [287]
one might say what follows we shall present finite deterministic models featuring
complementarity. The type of complementarity discussed in this chapter grew out
of an attempt to understand quantum complementarity by some finite, deterministic,
quasi-classical (automaton) model [373].

We shall do this by sets of partitions L of a given set with more than two elements.
Suppose one identifies arbitrary elements {x1, . . . , xk} of some partition with the
proposition “The properties x1, or, . . ., or xk are true.” Then each partition in L can
be associated with a Boolean algebra or, synonymously, with a context, or block.
Arbitrary partitions of L can be intertwined or pasted together [249, 263, 300, 376]
in their common elements. This pasting construction yields a partition logic.

19.2 Generalized Urn and Automata Models

For the sake of getting a better intuition of partition logic and their relation to com-
plementarity, two quasi-classical models will be discussed: (i) generalized urn mod-
els [577, 578] or, equivalently [506, 511], (ii) the (initial) state identification problem
of finite deterministic automata [104, 184, 373, 446, 499] which are in an unknown
initial state.

Both quasi-classic examplesmimic complementarity to the extent that even quasi-
quantum cryptography can be performed with them [509] as long as one sticks to the
rules (limiting measurements to certain types), and as long as value indefiniteness is
not a feature of the protocol [38, 519], that is, for instance, the Bennett and Brassard
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1984 protocol [56] can be implemented with generalized urn models, whereas the
Ekert protocol [198] cannot.

19.2.1 Automaton Models

A (Mealy type) automaton A = 〈S, I, O, δ,λ〉 is characterized by the set of states
S, by the set of input symbols I , and by the set of output symbols O . δ(s, i) = s ′
and λ(s, i) = o, s, s ′ ∈ S, i ∈ I and o ∈ O represent the transition and the output
functions, respectively. The restriction to Mealy automata is for convenience only.

The (initial) state identification problem for finite deterministic (Mealy) automata
is the following: suppose one is presented with a (blackbox containing a) single copy
of a finite deterministic automaton whose specifications are completely given with
the exception of the state it is initially in: find that initial state by the input/output
analysis of experiments with that automaton.

Then, as already pointed out byMoore, “there exists a [[finite and deterministic]]
machine such that any pair of its states are distinguishable, but there is no simple
experiment which can determine what state the machine was in at the beginning of
the experiment” [373, Theorem 1, p. 138].

19.2.2 Generalized Urn Models

Wright’s generalized urn model can be sketched by considering black balls with
symbols in different colours drawn simultaneously on it. Perception of these colours
are all “exclusive” or “complementary” by assuming that one looks at the ball with
(coloured) glasses which are capable of transmitting only a single colour. Therefore,
only the symbol in the respective colour is visible; all the symbols in different colours
merge with the black background and are therefore unrecognizable. Suppose there
are a lot of balls of many types (with various colours and an equal number of symbols
per colour) in an urn. The question or task is this: Suppose one single ball is drawn
from that urn; what is this particular type of ball or “ball state?”

Formally, a generalized urn model U = 〈U, C, L ,Λ〉 is characterized as follows.
Consider an ensemble of balls with black background colour. Printed on these balls
are some colour symbols from a symbolic alphabet L . The colours are elements of
a set of colours C . A particular ball type is associated with a unique combination of
mono-spectrally (no mixture of wavelength) coloured symbols printed on the black
ball background. Let U be the set of ball types. We shall assume that every ball
contains just one single symbol per colour. (Not all conceivable types of balls; i.e.,
not all colour/symbol combinations, may be present in this ensemble, though.)

Let |U | be the number of different types of balls, |C | be the number of different
mono-spectral colours, |L| be the number of different output symbols.
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Consider the deterministic “output” or “lookup” function Λ(u, c) = v, u ∈ U ,
c ∈ C , v ∈ L , which returns one symbol per ball type and colour. One interpretation
of this lookup function Λ is as follows. Consider a set of |C | eyeglasses build from
filters for the |C | different colours. Let us assume that these mono-spectral filters are
“perfect” in that they totally absorb light of all other colours but a particular single
one. In that way, every colour can be associated with a particular eyeglass and vice
versa.

19.2.3 Logical Equivalence for Concrete Partition Logics

The following considerations (largely based on [506, 511]) apply only to partition
logics which have “enough” – that is, a separating set of – two-valued states. A
logic L has a separating set of two-valued states if for every a, b ∈ L with a �= b
there is a two-valued state s such that s(a) �= s(b); that is, different propositions are
distinguishable by some state [523].

The connection between those toy models and partition logics can be achieved by
“inverting” the set of two-valued states as follows.

1. In the first step, every atom of this lattice is indexed or labelled by some natural
number, starting from “1” to “n”, where n stands for the number of lattice atoms.
The set of atoms is denoted by A = {1, 2, . . . , n}.

2. Then, all two-valued states of this lattice are labelled consecutively by natural
numbers, starting from “v1” to “vr”, where r stands for the number of two-valued
states. The set of states is denoted by V = {v1, v2, . . . , vr }.

3. Now partitions are defined as follows. For every atom, a set is created whose
members are the index numbers or “labels” of the two-valued states which are
“true” or take on the value “1” on this atom. More precisely, the elements pi (a)

of the partition P j corresponding to some atom a ∈ A are defined by

pi (a) = {k | vk(a) = 1, vk ∈ V } .

The partitions are obtained by taking the unions of all pi which belong to the
same subalgebra P j . That the corresponding sets are indeed partitions follows
from the properties of two-valued states: two-valued states (are “true” or) take on
the value “1” on just one atom per subalgebra and (“false” or) take on the value
“0” on all other atoms of this subalgebra.

4. Let there be t partitions labelled by “1” through “t”. The partition logic is obtained
by a pasting of all partitions P j , 1 ≤ j ≤ t .

5. In the following step, a corresponding generalized urn model or automaton model
is obtained from the partition logic just constructed.

a. A generalized urn model is obtained by the following identifications (see
also [577, p. 271]).
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i. Take as many ball types as there are two-valued states; i.e., r types of
balls.

ii. Take as many colours as there are subalgebras or partitions; i.e., t
colours.

iii. Take as many symbols as there are elements in the partition(s) with
the maximal number of elements; i.e., max1≤ j≤t |P j | ≤ n. To make
the construction easier, we may just take as many symbols as there are
atoms; i.e., n symbols. (In most cases, much less symbols will suffice).
Label the symbols by sl . Finally, take r “generic” balls with black back-
ground. Now associate with every measure a different ball type. (There
are r two-valued states, so there will be r ball types.)

iv. The i th ball type is painted by coloured symbols as follows: Find the
atoms for which the i th two-valued state vi is 1. Then paint the symbol
corresponding to every such lattice atom on the ball, thereby choosing
the colour associated with the subalgebra or partition the atom belongs
to. If the atom belongs to more than one subalgebra, then paint the same
symbol in as many colours as there are partitions or subalgebras the
atom belongs to (one symbol per subalgebra).

This completes the construction.
b. A Mealy automaton is obtained by the following identifications (see also

[499, pp. 154–155]).
i. Take as many automaton states as there are two-valued states; that is, r

automaton states.
ii. Take as many input symbols as there are subalgebras or partitions; i.e.,

t symbols.
iii. Take as many output symbols as there are elements in the partition(s)

with the maximal number of elements (plus one additional auxiliary
output symbol “∗”, see below); i.e., max1≤ j≤t |P j | ≤ n + 1.

iv. The output function is chosen tomatch the elements of the state partition
corresponding to some input symbol. Alternatively, let the lattice atom
aq ∈ A must be an atom of the subalgebra corresponding to the input
il . Then one may choose an output function such as

λ(vk, il) =
{

aq if vk(aq) = 1
∗ if vk(aq) = 0

with 1 ≤ k ≤ r and 1 ≤ l ≤ t . Here, the additional output symbol “∗”
is needed.

v. The transition function is r–to–1 (e.g., by δ(s, i) = s1, s, s1 ∈ S, i ∈ I ),
i.e., after one input the information about the initial state is completely
lost.

This completes the construction.
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19.3 Some Examples

The universe of possible partition logics [184, 446, 499, 511] is huge; and so are the
conceivable probability measures [521] on them. In what followswe shall restrict our
attention to partition logics containing partitions with equal numbers of elements.

19.3.1 Logics of the “Chinese Lantern Type”

Let us, for the sake of illustration, just mention as an example a set of partitions of
the set {1, 2, 3}:

L = {{{1}, {2, 3}}, {{1, 3}, {2}}, {{1, 2}, {3}}} . (19.1)

The term “{1}” corresponds to the proposition “1 is true.” Every partition forms a
2-atomic Boolean subalgebra. It results in three Boolean algebras “spanned” by the
atoms {1}, not({1}) = {2, 3}, {2}, not({2}) = {1, 3}, and {3}, not({3}) = {1, 2}, which
are not intertwined and thus form a horizontal sum of three Boolean subalgebras 23.
This is equivalent to a quantum logic of, say, spin- 12 particles whose spin is measured
along three distinct directions [501].

Complementarity is obtained by realizing that one has to make choices: each
choice of a particular partition corresponds to a type of measurement made. The
set of (sometimes intertwined) partitions represents the “universe of conceivable
measurements.”

19.3.2 (Counter-)Examples of Triangular Logics

The propositional structure depicted in Fig. 19.1(i) has no two-valued (admissible [3,
5, 6]) state: The supposition that one element is “1” forces the remaining two to be
“0,” thus leaving the “adjacent” block without a “1” (there cannot be only zeroes in a
context). This means that it has no representation as a quasi-classical partition logic.

The logic depicted in Fig. 19.1(ii) has sufficiently many (indeed four) two-valued
measures to be representable by a partition logic [519]. Indeed, a concrete partition
logic obtained by the earlier construction based on the inversion of the 4 two-valued
states is

L = {{{1}, {2, 4}, {3}}, {{2}, {3, 4}, {1}}, {{3}, {1, 4}, {2}}} . (19.2)

The propositional structure depicted in Fig. 19.1(iii) is too tightly interlinked to be
representable by a partition logic – it allows only one two-valued state and thus has
no separating set of two-valued states.
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(i) (ii) (iii)

Fig. 19.1 Orthogonality diagrams representing tight triangular pastings of two- and three-atomic
contexts

a3 = {10, 11, 12, 13, 14} a4 = {2, 6, 7, 8} a5 = {1, 3, 4, 5, 9}

a2 = {4, 5, 6, 7, 8, 9} a6 = {2, 6, 8, 11, 12, 14}

a1 = {1, 2, 3} a7 = {7, 10, 13}
a13 =
{1, 4, 5, 10, 11, 12}

a12 = {4, 6, 9, 12, 13, 14} a8 = {3, 5, 8, 9, 11, 14}

a11 = {5, 7, 8, 10, 11} a10 = {3, 9, 13, 14} a9 = {1, 2, 4, 6, 12}

Fig. 19.2 Greechie diagram of automaton partition logic with a nonfull set of dispersion-free
measures

19.3.3 Generalized Urn Model of the Kochen–Specker “Bug”
Logic

Another example [506, 507, 511] is a logic which is already mentioned by Kochen
and Specker [314] (this is a subgraph of their Γ1 discussed in Sect. 12.9.8.4) whose
automaton partition logic is depicted in Fig. 19.2. There are 14 dispersion-free states
which are listed in Table12.4. The associated generalized urn model is listed in
Table19.1.

19.3.4 Kochen–Specker Type Logics

With regards to quantum logic, partition logics share some common features but lack
others. For instance, not all partition logics can be represented as sublogics of some
quantum logic: as a counterexample take the partition logic depicted in Fig. 19.1(ii),
which has no representation inR3. The central concern here is representability: since
atoms in quantum logics can be identified with nonzero vectors or their associated
projectors, the partition logic needs to have a geometric interpretation (embedding
in vector space) preserving or rather representing the partition logical structure.

http://dx.doi.org/10.1007/978-3-319-70815-7_12
http://dx.doi.org/10.1007/978-3-319-70815-7_12
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Nevertheless, all finite sublogics of quantum logics with a separating set of two-
valued states are equivalent to partition logics [139].

On the other hand, the Kochen–Specker theorem (cf. Sect. 12.9.8.7 on p. 97;
in particular, the quantum sublattice depicted in Fig. 12.6) asserts that there exist
sublogics of quantum logics which have no two-valued state at all. As has already
been noted earlier, in a very precise and formal way, this can be identified with either
contextuality [517, 518] or with value indefiniteness [286, 401].

This is all “bad news for partition logics” because although these quantum
mechanical sublogics can be embedded in some (even low-dimensional) vector space,
they have no two-valued state at all – alas, a separating set of two-valued state would
be needed for a construction or characterization of any partition logics. Indeed it is
even possible to show that, with reasonable side assumptions such as noncontextual-
ity, there exist constructive proofs demonstrating that there is no value definiteness
– that is, no two-valued state – beyond a single proposition and its negation [3, 5, 6]
(cf. Sect. 12.9.8.7 on p. 97). Whether or not partition logics have empirical relevance
remains an open question.
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Part V
Transcendence



Chapter 20
Miracles, Gaps and Oracles

Since theological nomenclature hardly belongs to the standard repertoire of physicists
but will be used later, as some termini technici will be mentioned upfront. Thereby
we will mainly follow Philipp Frank’s (informal) definitions of gaps and miracles
[219, 220].

In the theological context, creatio ex nihilo often refers to the ‘initial boot up of
the universe;’ whereas creatio continua stands for the permanent intervention of the
divine throughout past, present, and future. Alas, as wewill bemainly interested with
physical events, we shall refer to creatio ex nihilo, or just ex nihilo, as something
coming from nothing; in particular, from no intrinsic [500] causation (and thus rather
consider the theological creatio continua; apologies for this potential confusion). Ex
nihilo denies, and is in contradiction, to the principle of sufficient reason (cf Sect.
17.1, p. 135), stating that nothing is without intrinsic causation, and vice versa.

According to Frank [219, 220, Sect. II, 12], a gap stands for the incompleteness
of the laws of nature, which allow for the occurrence of events without any unique
natural (immanent, intrinsic) cause, and for the possible intervention of higher pow-
ers [219, 220, Sect. II, 9]: “Under certain circumstances they do not say what def-
initely has to happen but allow for several possibilities; which of these possibilities
comes about depends on that higher power which therefore can intervene without
violating laws of nature.”

Many scientists, among them Poisson, Duhamel, Bertrand, and Boussinesq [162,
494], have considered such gaps as a possibility of free will even before the advent
of quantum mechanics. Maxwell may have anticipated a scenario related to deter-
ministic chaos (cf. Chap. 18, p. 141) by considering singular points and instability
of motion with respect to very small variations of initial states, whereas Boussinesq
seemed to have stressed rather the nonuniqueness of solutions of certain ordinary
differential equations [162, 343, 494].

This is different from a direct breach or ‘rapture’ of the laws of nature [219,
220, Sect. II, 10]; also referred to as ontological gap by a forced intervention in
the otherwise uniformly causal connection of events [438, Sect. 3.C.3, Type II]. An
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example for an ontological gap would be the sudden ad hoc turn of a celestial object
which would otherwise have proceeded along a trajectory governed by the laws of
inertia and gravitation.

Sometimes, certain correlations are subjectively and semantically experienced as
synchronicity, that is, with a purpose – the events are not causally connected but
“stand to one another in a meaningful relationship of simultaneity” [296, 299]. A
more personal example is Jung’s experience of a solid oak table suddenly split right
across, soon followed by a strong steel knife breaking in pieces for no apparent
reason [297, 298, pp. 111–2, 104–5].

In what follows we shall adopt Frank’s conceptualization of a miracle [219, 220,
Sect. II, 15] as a gap (in Frank’s sense cited above) which is exploited according
to a plan or purpose; so a ‘higher power’ interacts via the incompleteness (lack of
determinacy) of the laws of nature to pursue an intention.

Note that this notion of miracle is different from the common acceptation quoted
by Voltaire, according to which a miracle is the violation of divine and eternal
laws [549, Sect. 330].

An oracle (if it exists) is conceptualized by an agent capable of a decision or
an emanation (such as a random number) which cannot be produced by a universal
computer. Again, we take up Frank’s conception of a gap by realizing oracles via
gaps.
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Chapter 21
Dualistic Interfaces

In what follows the term transcendence refers to an entity or agent beyond all physical
laws. (It is not used in the Kantian sense.) In contrast, immanence refers to all
operational, intrinsic physical means available to embedded observers [500, 538]
from within some universe.

Suppose that transcendent agents, interact with a(n) (in)deterministic universe via
suitable interfaces. In what follows we shall refer to the transcendental universe as
the beyond.

21.1 Gaming Metaphor

For the sake of metaphorical models, take Eccles’ mind-brain model [191], or con-
sider a virtual reality, and, more particular, a computer game. In such a gaming
universe, various human players are represented by avatars. There, the universe is
identified with the game world created by an algorithm (essentially, some computer
program), and the transcendental agent is identified with the human gamer. The inter-
face consists of any kind of device and method connecting a human gamer with the
avatar. Like the god Janus in the Roman mythology, an interface possesses two faces
or handles: one into the universe, and a second one into the beyond.

Human players constantly input or inject choices through the interface, and vice
versa. In this hierarchical, dualistic scenario, such choices need not solely (or even
entirely) be determined by any conditions of the game world: human players are
transcendental with respect to the context of the game world, and are subject to their
own universe they live in (including the interface). Nevertheless the game world
itself is totally deterministic in a very specific way: it allows the player’s input from
beyond; but other than that it is created by a computation. One may think of a
player as a specific sort of indeterministic (with respect to intrinsic means) oracle,
or subprogram, or functional library.
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Another algorithmic metaphor is an operating system, or a real-time computer
system, serving as context. (This is different from a classical Turing machine, whose
emphasis is not on interaction with some user-agent.) The user is identified with the
agent. Any user not embedded within the context is thus transcendent with respect to
this computation context. In all these cases the real-time computer system acts deter-
ministically on any input received from the agent. It observes and obeys commands
of the agent handed over to it via some interface. An interface could be anything
allowing communication between the real-time computer system and the (human)
agent; say a touch screen, a typewriter(/display), or any brain-computer interface.

21.2 How to Acknowledge Intentionality?

The mere existence of gaps in the causal fabric cannot be interpreted as sufficient
evidence for the existence of providence or free will, because these gaps may be
completely supplied by creatio continua.

As has already been observed by Frank [219, Kapitel III, Sects. 14 and 15], in order
for anymiracle or free will to manifest itself through any such gap in the natural laws,
it needs to be systematic, according to a plan and intentional (German planmäßig).
If there were no possibilities to inject information or other matter or content into the
universe from beyond through such gaps, there would be no possibility to manipulate
the universe, and therefore no substantial choice.

Alas, intentionality may turn out to be difficult or even impossible to prove. How
can one intrinsically decide between chance on the one hand, and providence, or some
agent executing free will through the gap interface, on the other hand? The interface
must in both cases employ gaps in the intrinsic laws of the universe, thereby allowing
steering and communicating with it in a feasible, consistent manner. That excludes
any kind of immanent predictability of the signals emanating from it. (Otherwise,
the behaviour across the interface would be predictable and deterministic.) Hence,
for an embedded observer [538] employing intrinsic means which are operationally
available in his universe [500], no definite criterion can exist to either prove or falsify
claims regarding mere chance (by creatio continua) versus the free choice of an agent.
Both cases – free will of some agent as well as complete chance – express themselves
by irreducible intrinsic indeterminism.

Suppose an agent or gamer is immersed in such dualistic environment and expe-
riences “both of its sides” through the interface but has no knowledge thereof. (C.f
the metaphors “we are the dead on vacation” by Godard [241], or of the “brain in
the vat” employed by Descartes [166, Second meditation, 26–29] and Putnam [422,
Chap. 1], among others.) Then the agent’s knowledge of the beyond amounts to inef-
fability [294]. However, ineffability is neither necessary nor sufficient for dualism;
and could also be a mere subjective illusion, constructed by the agent in a deparate
attempt to make sense and create meaning from his sensory perceptions, very much
like brain hallucinations [419]. And yet, ineffability might present some hint on
metaphysics.
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For the sake of an example, suppose for a moment that we would possess a sort
of ‘Ark of the Covenant,’ an oracle which communicates to us the will of the beyond,
and, in particular, of divinity. How could we be sure of that? (Sarfatti, in order to
investigate the paranormal, attempted to build what he called an Eccles telegraph by
connecting a radioactive source to a typewriter.) This situation is not dissimilar to
problems in recognizing hypercomputation, that is, computational capacities beyond
universal computation [334]; in particular also to zero knowledge proofs [65, 425].
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Chapter 22
(De)briefing

This chapter is for those who neither want to bother with details nor have time for the
expositions and the explanatory rants of previous parts; or as a teaser to go deeper
into the subject and to want to know more.

22.1 Provable Unknowables

First and foremost, from the rational, scientific point of view, there is and never will
be anything like “absolute randomness.” Knowledge of absolute randomness, if it
“exists” in some platonic realm of ideas, is ineffable and thus strictly metaphysical
and metamathematical, as it is blocked by various theorems about the impossibility
of induction (cf. Chap.7, p. 35ff), forecasting (cf. Chap.6, p. 29ff), and representation
(cf. Sect. A.4, p. 173ff). Any proof of such theorems, and thus their validity, is only
relative to the assumptions made.

Claims regarding “absolute randomness” – and, for the same reasons, “absolute
determinism” – in physics should therefore be met with utmost skepticism. Such
postures might serve as a heuristic principle, a sign-post, but they do not signify
anything beyond the contemporary, most likely transient (some might even say spu-
rious), worldview, as well as the personal and subjective preferences of the individual
issuing them. Like all constructions of the mind and society, physical theories are
suspended in free thought – an echo chamber of sorts.

Whoever trusts a physical random number generator has to trust the assurances
of the physical authorities that it indeed performs as claimed – in this case, that it
produces random numbers. The authorities in turn base their judgement on personal
inclinations [68, p. 866] and in metaphysical assertions [589]; as well as on their trust
on the theories and models of functioning of such devices. Theories and models are
considered trustworthy if they satisfy a “reasonable” and “meaningful” catalogue of
criteria; but never more than that.
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One such reasonable criterion is the requirement that it should at least in principle
be possible to locate the (re)source for randomness or indeterminism. Unfortunately
both in quantum mechanics, as well as for classical systems, there is no such consol-
idated agreement about the physical resources of randomness. Therefore, whenever
a physical random number generator is employed, one has to bear in mind the inse-
cure, and means relative, performance of this device. It is not that, pragmatically
and for all practical purposes, it would not be usable. But it could fail in particular
circumstances one has little idea about, and control of.

22.2 Quantum (In)Determinism

There are three classes or types of quantum indeterminism: complementarity (cf.
Sect. 12.3 and Chap.19), value indefiniteness (often, referred to as contextuality after
the realist Bell; cf. Sect. 12.9.8.7, p. 97ff), as well as single measurement outcomes
and events; all of them tied to the quantum measurement problem (cf. Sect. 12.10,
p. 118ff). Thus quantum random number generators are subject to some form of the
quantum measurement problem, which lies at the heart of an ongoing debate – a
debate which has been declared (re)solved or superfluous by various self-proclaimed
authorities for a variety of conflicting reasons. Alas, quantum mechanics, despite
being immensely useful for the prediction and comprehension of certain phenom-
ena, formally operates with an inconsistent set of rules; in particular, pertaining to
measurement. As has already been pointed out by von Neumann, the assumption
of irreversible measurements contradicts the unitary deterministic evolution of the
quantum state. (Inconsistencies, even in the core of mathematics, such as in Cantor’s
set theory, should be rather a reason for consideration and prudence but not cause too
much panic – after all, as noted earlier, those constructions of ourmind are suspended
in our free thought.)

Some supposedly “active” elements such as beam splitters are represented by
perfectly deterministic (unitary, that is, distance preserving permutations, such as
the Hadamard gate) evolutions (cf. Chap. 11 and Sect. 12.5). Therefore they cannot
be directly identified as quantum resource for indeterminism.

The measurement process in quantum mechanics appears to be related to entan-
glement and individuation: in order to be able to know from each other, the mea-
surement apparatus has to acquire knowledge about the object; and in order to do
so, the former has to interact with the latter. Thereby entanglement in the form of
relational properties of object and apparatus is created. Because of the permutativity
(one-to-one-ness) of the entire process (resulting in a sort of zero-sum game) these
relationally definite properties (or, by another term, statistical correlations) come at
the price of the indefiniteness of the individual, constituent parts – the original object
as well as themeasurement device are in no definite individual state any longer. If one
forces individuality upon them (by some later measurement on the individual parts),
then the outcome cannot be totally (but may be partly) pre-determined by the state
of the constituent parts before that measurement. Thereby it may be justified to say

http://dx.doi.org/10.1007/978-3-319-70815-7_12
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that “the measurement creates the outcome which is indeterminate before.” But this
is a rather trivial statement expressing the fact that the outside environment with its
supposedly huge number of degrees of freedom, in particular also the measurement
device, has contributed to the outcome.

The author’s impression is that Bohr and his followers may never have understood
the true reason for value indefiniteness: the scarcity and constancy of information
encoded into the quantum state; and the entanglement across the Heisenberg cut
between object and measurement device. This scarcity also shows up in “static”
Kochen–Specker type theorems [6, 314, 401] expressing the fact that only a single
maximal observable or context is defined at any time.

22.3 Classical (In)Determinism

Classical (in)determinism depends on its definition, and on the assumptions made.
One of these assumptions is the existence of the continuum – not only as formal con-
venience but as a physical entity. Almost all elements of a continuum are random (cf.
Sect. A.2, p. 171ff). Any computable form of evolution “revealing” the algorithmic
information content “buried” in a single supposedly random real physical entity (e.g.,
initial values) corresponds to a form of deterministic chaos (cf. Chap.18, p. 141ff).
If the assumption of the physical existence of the continuum is dropped in favour
of constructive, computable entities, then what remains from these indeterministic
scenarios is the high sensitivity of the system behaviour on variations of initial states.

Another form of model-induced classical indeterminism is due to representation
and formalization of classical physical systems in terms of differential equations. In
such cases the question of uniqueness of its solutions is crucial. Nonunique solutions
indicate indeterminism.However, the requirement of Lipschitz continuity guarantees
uniqueness in many cases which appear to be indeterministic (due to the possibility
of weak solutions) without this property (cf. Sect. 17.4, p. 137ff).

22.4 Comparison with Pseudo-randomness

Should one prefer physical (re)sources of randomness over mathematical pseudo-
random? Of course, “anyone who considers arithmetical methods of producing ran-
dom digits is . . . in a state of sin” [553, p. 768]. And yet, some desired features of
randomness can be formally certified even for such computable entities.

For instance, take Borel normality; that is, the property that every subsequence
of length n occurs in a “large” b-ary sequence with frequency b−n . Almost all real
numbers are normal to a given base b; in particular, all random sequences are Borel
normal [102]. Yet, individual (even computable) numbers are hard to “pin down”
as being normal; and no well-known mathematical constant, such as e or log 2,
is known to be normal to any integer base. Also the normality of π, the ratio of
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the circumference to the diameter of a “perfect” (platonic) circle, remains conjec-
tural [26], although particular digits are directly computable [25]. Von Neumann’s
paper [553] quoted earlier contains a way to eliminate bias (and thus establish Borel
normality up to length 1) of a binary sequence (essentially a partitioning of the
sequence into subsequences of length 2, followed by a mapping of 00, 11 �→ ∅,
01 �→ 0, 10 �→ 1); but only if this sequence is generated by independent physical
events. Physical independence may be easy to obtain for all practical purposes, but
difficult in principle.

On the other hand, Champernowne’s number 0.12345678910. . ., obtained by
concatenating the decimal representations of the natural numbers in order, as well as
the Copeland–Erdos constant 0.2357111317192329. . ., obtained by concatenating
the prime numbers in order, are both Borel normal in base 10. So, if Borel normality
suffices for the particular task, then it might be better to consider such carefully
chosenpseudo-randomnumbers (cf.Ref. [110] for comparisonswith certain quantum
random sources).

There exist situations which are perplexing yet not very helpful for practical
purposes: Chaitin’s Ω (cf. Sect. A.6, p. 176ff) is also Borel normal in any base, and
additionally it is provable random. Algorithms for computing the very first couple of
digits of Ω [109, 111] exist; alas the rate of convergence of the sum yielding Ω is so
bad (in terms of time and other computational capacities worse than any computable
function of the d-ary place) it is incomputable.

22.5 Perception and Forward Tactics Toward Unknowns

Whatever one’s personal inclinations toward (in)determinism may be – one might
characterize our situation either as an ocean of unknowns with a few islands of pre-
liminary predictables; or, conversely, as a sea of determinism with the occasional
islands or gaps of an otherwise lawful behaviour – every such inclination remains
strictly means relative, metaphysical and subjective. Maybe such preferences says
more about the person than the situation; because a person’s stance is often deter-
mined by the subconscious desires, hopes and fears driving that individual. Choose
one, and choose wisely for your needs; or even better, “if you can possibly avoid
it [211, p. 129],” choose none, and remain conscious about the impossibility to know.

Let me finally quote the late Planck [410] concluding that [409, p. 539] (see also
Earman [186, p. 1372]) “. . . the law of causality is neither right nor wrong, it can be
neither generally proved nor generally disproved. It is rather a heuristic principle, a
sign-post (and to my mind the most valuable sign-post we possess) to guide us in the
motley confusion of events and to show us the direction in which scientific research
must advance in order to attain fruitful results. As the law of causality immediately
seizes the awakening soul of the child and causes him indefatigably to ask “Why?”
so it accompanies the investigator through his whole life and incessantly sets him
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new problems. For science does not mean contemplative rest in possession of sure
knowledge, it means untiring work and steadily advancing development.”1

Planck also emphasized the joy of and the motivation from the unknown [411]:
“We will never come to a completion, to the final. Scientific work will never cease.
It would be bad if it stopped. For if there were no more problems one would put
his hands in his lap and his head to rest, and would not work anymore. And rest is
stagnation, and rest is death – in a scientific sense. The fortune of the investigator is
not to have the truth, but to gain the truth. And in this progressive successful search
for truth, lies the real satisfaction. Of course, the search for itself is not satisfactory.
It must be successful. And this successful research is the source of every effort, and
also the source of every spiritual enjoyment. When the source dries up, when the truth
is found, then it is over, then one can fall asleep mentally and physically. But that is
taken care of, that we don’t experience this, and therein persists our happiness.”2

1In German [410, p. 26]: “. . . das Kausalgesetz ist weder richtig noch falsch, es ist vielmehr ein
heuristisches Prinzip, ein Wegweiser, und zwar nach meiner Meinung der wertvollste Wegweiser,
den wir besitzen, um uns in dem bunten Wirrwarr der Ereignisse zurechtzufinden und die Richtung
anzuzeigen, in der die wissenschaftliche Forschung vorangehen muss, um zu fruchtbaren Ergebnis-
sen zu gelangen. Wie das Kausalgesetz schon die erwachende Seele des Kindes sogleich in Beschlag
nimmt und ihm die unermüdliche Frage “warum ?” in den Mund legt, so begleitet es den Forscher
durch sein ganzes Leben und stellt ihm unaufhörlich neue Probleme. Denn die Wissenschaft bedeutet
nicht beschauliches Ausruhen im Besitz gewonnener sicherer Erkenntnis, sondern sie bedeutet rast-
lose Arbeit und stets vorwärtsschreitende Entwicklung, nach einem Ziel, das wir wohl dichterisch
zu ahnen, aber niemals verstandesmäßig voll zu erfassen vermögen”.
2German original: “. . . zum Abschluss, zum Endgültigen, werden wir nie kommen. Das wis-
senschaftliche Arbeiten wird nie aufhören – es wäre schlimm, wenn es aufhören würde. Denn wenn
es keine Probleme mehr gäbe, dann würde man die Hände in den Schoß legen und den Kopf zur Ruhe
und würde nicht mehr arbeiten. Und Ruhe ist Stillstand, und Ruhe ist Tod – in wissenschaftlicher
Beziehung.

Das Glück des Forschers besteht nicht darin, eine Wahrheit zu besitzen, sondern die Wahrheit
zu erringen. Und in diesem fortschreitenden erfolgreichen Suchen nach der Wahrheit, da liegt die
eigentliche Befriedigung. Das Suchen an sich befriedigt natürlich noch nicht. Es muss erfolgreich
sein. Aber dieses erfolgreiche Arbeiten, das ist dasjenige, was den Quell jeder Anstrengung und
auch den Quell eines jeden geistigen Genusses darstellt. Wenn der Quell versiegt, wenn die Wahrheit
gefunden ist, dann ist es zu Ende, dann kann man sich geistig und körperlich schlafen legen. Aber
dafür ist gesorgt, dass wir das nicht erleben, und darin besteht unser Glück”.
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Appendix A
Formal (In)Computability and Randomness

Hilbert’s dream in particular, and the formalistic axiomatic program in general, was
to ground mathematics by a finite formal system – a set of axioms and determinis-
tic rules of derivation, the latter (by the Curry-Howard correspondence) operating
like an algorithm on the former like an input, which would proof all true theorems
of mathematics. Gödel and Turing, among others, put an end to this formalistic
dream [160, 273], as vividly expressed by Gödel in a postscript, dated from June 3,
1964 [243, pp. 369–370]: “due to A. M. Turing’s work, a precise and unquestionably
adequate definition of the general concept of formal system can now be given, the
existence of undecidable arithmetical propositions and the non-demonstrability of
the consistency of a system in the same system can now be proved rigorously for every
consistent formal system containing a certain amount of finitary number theory.

Turing’s work gives an analysis of the concept of “mechanical procedure” (alias
“algorithm” or “computation procedure” or “finite combinatorial procedure”). This
concept is shown to be equivalent with that of a “Turing machine.” A formal system
can simply be defined to be any mechanical procedure for producing formulas, called
provable formulas.”

We shall present a very brief survey of the consequences of these findings, and
first hint on the fact that almost all elements of the continuum, and, in particular,
almost all reals, are incomputable. That is, they are inaccessibly to any computation.

Then we head on to modern, algorithmic, definitions of randomness, and, in
particular, of random reals. That is, random reals are algorithmically incompressible,
and cannot be produced by any program whose code has much smaller length (as
the original phenotype or number).

Therebywe shallmention quantitative incompleteness theorems and introduce the
busy beaver function. In a certain sense, those constructions give a glimpse on how
fast a computation may diverge, and how difficult it is to compute or represent certain
objects. We shall also speculate how primordial chaos may give rise to unbounded
complexities.

Finally we consider Chaitin’s halting probability Omega, which serves as a sort of
Rosetta stone for comprehending at least mild forms of random reals in perplexing
ways.

© The Author(s) 2018
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A.1 Abundance of Incomputable Reals

For the sake of an orientation for the reader a very brief expose of formal definitions
related to indeterminism and randomness is offered. Mostly the concepts will be
presented without proofs.

Let us start with the setR of real numbers [see for instance, Refs. [179, 194, 488],
or Ref. [281] (in German)]. Reals will be coded by, or written as, infinite decimals.

By Cantor’s theorem using diagonalization [488, Sect. 3.5.1, pp. 70–71] the set
of real numbers R (or, say, the real unit interval [0, 1]) is nondenumerable. More
generally – because one needs not proceed along the diagonal and process the entries
therein to produce a real which does not occur in any type of enumeration of reals
– the same result can be obtained by applying self-reference and the existence of
some map without any fixed points [579, p. 368], As a result R cannot be brought
into a one-to-one correspondence with the natural numbers N (such as, for instance,
the integers Z or the rationals Q). Sets of this R type will be called continua. Sets of
type N will be called denumerable.

But we can go quantitatively further than that: we can show that, from the point
of view of measure theory, denumerable sets are “meagre;” that is, almost all reals
are not in any such set of denumerable numbers [488, Sect. 3.5.2, pp. 71–72]. For a
sketch of a proof suppose that we are “covering” the i’th element of the denumerable
set with an interval δ−iε, with 1 < δ < ∞ and ε a tiny number. Summing over all
such cover intervals can be readily performed, as the respective set is denumerable.
By the geometric series summation formula, the entire length covered is at most
(for nonoverlapping intervals) εδ−1/(1 − δ−1). We can make this covering length
arbitrary small bymaking either δ larger or ε smaller. That is, in thismeasure theoretic,
quantitative, sense, “almost all” reals are not in any particular denumerable set.

Next we define a computable real by the property that it is produced – that is, it
is the output of – some algorithm “running” on a (supposedly universal) computer.
The set of computable reals is denumerable because we can find ways to enumerate
all of them: for a sketch of the idea how to perform this task, imagine the numbers
produced by successively generated (by their code lengths in lexicographic order)
algorithms at successive times.

As a consequence we find that “almost all” reals are incomputable. That is, if one
considers the real unit interval as a “continuum urn” – one needs the axiom of choice
in order to “draw” a general element of this urn, as no computable “handle” exists
to fetch it – then with probability 1 it will be incomputable.

It may appear amazing that all denumerable sets are so “meagre,” and its members
so “thinly distributed and embedded” in the real continuum. In particular, such sets
– such as the rational numbers and also the computable ones which include “many
more” irrational numbers – are dense in the sense that in-between two arbitrary
numbers a and b with a < b of a dense set there always lies another number c in that
set, such that c is larger than a but smaller than b; that is, a < c < b.
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A.2 Random Reals

A real can be defined to be random if its (decimal) expansion cannot be algorithmi-
cally compressed [103, 122, 127, 178, 315, 316, 325, 326, 337]. In particular [122],
“it may perhaps not appear entirely arbitrary to define a patternless or random finite
binary sequence as a sequence which, in order to be calculated, requires, roughly
speaking, at least as long a program as any other binary sequence of the same
length.”

Randomness via algorithmic incompressibility implies that the respective random
sequences or random reals [353] “possess all conceivable computable statistical
properties of randomness”; that is, they pass all conceivable computable statistical
tests of randomness. What is such a “conceivable computable statistical test?” It is
based on all conceivable computable laws – that is, all algorithms. More precisely,
a single conceivable computable statistical test is based on a single algorithm: it
is the hypothesis that the random sequences or random real cannot be generated
by this algorithm. Because if it were, it would be algorithmically compressible by
that algorithm. Herein lies the connection between statistical test and algorithm: that
any algorithm constitutes an algorithmic test against nonrandomness (algorithmic
compressibility); and vice versa, every computable statistical test is representable by
an algorithm.

A.3 Algorithmic Information

A.3.1 Definition

Let us be more precise and, for the sake of avoiding difficulties related to subaddi-
tivity [127], restrict ourselves to prefix or instantaneous program codes [126, 335]
which have the “prefix (free) property.” This property requires that there is no whole
code word in the system that is a prefix (initial segment) of any other code word in
that same system.

Define the algorithmic information (content), or, used synonymously, the (Kol-
mogorov) program-size complexity, or the information-theoretic complexity of an
individual object is a measure or criterion how difficult it is to algorithmically specify
(but not in terms of time it takes to produce) that object [127]. In particular, the algo-
rithmic information content I (x) of binary string x as the size/length (encoded in
bits, that is, binary digits) of the shortest/smallest program running on some (Turing-
type) universal computer U to calculate x , plus the information content I (|s|) of the
length |s| of this sequence (since this also contributes); that is, if |s| stands for the
length of the binary sequence sn in bits, and the order O( f ) of f stands for a function
whose absolute value is bounded by a constant times f [and thus O(1) just stands
for a constant], then
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I (x) = |s| + I (|s|) + O(1) = |s| + O(log2 |s|). (A.1)

A.3.2 Algorithmic Information of a Single Random
Sequence

Instead of delving into joint and mutual information content we head straight to
a formal definition of randomness. A finite random binary sequence sn of length
n is defined to be (nearly) algorithmically incompressible; that is, its algorithmic
information content I (sn) is not (much) less than n. An infinite binary sequence s
is random if its initial segments sn are random finite binary sequences. That is, s
is random if and only if there exists some constant c, such that, for all n ∈ N, the
algorithmic information content of its initial segments sn is bounded from below by
n − c; that is,

s is random ⇔ ∃c∀n [I (sn) > n − c] . (A.2)

A random real (in arbitrary base notation) is one whose base 2 expansion of its
fractional part (forgetting the integer part as long as it is finite) is a random infinite
binary sequence.

A.3.3 Bounds from Above

Let us go a little further and mention a bound from above on the algorithmic infor-
mation content of a string of length n: it must be less than n + O(1). Because, to
paraphrase Chaitin [124, p. 11], “the algorithmic information content of a string of
length n must be less than n + O(1), because any string of length n can be calculated
by putting it directly into a program as a table. This requires n bits, to which must
be added O(1) bits of instructions for printing the table. In other words, if nothing
betters occurs to us, the string itself can be used as its definition, and this requires
only a few more bits than its length.”

A.3.4 Abundance of Random Reals

Almost all reals of the continuum are not only incomputable, as we have argued
previously by a measure theoretic argument, but they are also random. Rather than
rephrasing the argument, Chaitin’s argument [124, p. 11] can be paraphrased as
follows: “the algorithmic information content of the great majority of strings of
length n is approximately n, and very few strings of length n are of algorithmic
information content much less than n. The reason is simply that there are much fewer
programs of length appreciably less than n than strings of length n. More exactly,
there are 2n binary strings of length n, and less than 2n−k binary encoded programs
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of length less than n − k. Thus the number of strings of length n and algorithmic
information content less than n − k decreases exponentially as k increases, and
increases exponentially as n increases.”

Asa consequence,most of the sequences of lengthn are of algorithmic information
content close to n, and, according to the definition earlier, appear random. Therefore,
if one chooses some nonalgorithmic method generating such sequences – if they are
operational, that is, they can be produced by some physically process; say, by tossing
a fair coin and hoping for the best that this process is not deterministic or biased as
alleged in Ref. [169] – then chances are high that the algorithmic information content
of such a string will be as long as the length of that sequence. Pointedly stated:
“grabbing and picking” a random real from the continuum with nonalgorithmic
means, facilitated by the axiom of choice, will almost always yield a random real.

A.4 Information-Theoretic Limitations of Formal Systems

By reduction to the halting problem it can be argued that the algorithmic information
content I in general is incomputable. Because computability of the algorithmic infor-
mation content I (sn) would require that it would be possible to compute whether or
not particular programs of length up to n + O(n) halt (after output of sn). But this is
clearly impossible for large enough (and even for small) n; see also the busy beaver
function discussed later.

It is therefore impossible that in general it is possible to prove (non)randomness or
(in)computability of a particular individual infinite sequence. (Any particular finite
sequence is provable computable, as by the earlier mentioned tabulation technique,
an algorithm outputting it can be constructed by putting it directly into a program
as a table. This is no contradiction to the earlier definition of randomness of a finite
sequence because this ismeans relative and not absolute.) That is, all statements (e.g.,
Ref. [589]) such as “this string is irreducibly random,” at least as far as they relate to
ontology, are provably unprovable hypotheses. Epistemically they are inclinations
at best, as expressed by Born’s statement [68, p. 866] (English translation in [570,
p. 54]) “I myself am inclined to give up determinism in the world of atoms.” At worst
they are ideologies which remain unfalsifiable.

In a quantitative sense one could go beyond the Gödel–Turing reduction. Let us
follow Chaitin [124] and employing Berry’s paradox, as reported by Russell [273,
p. 153, contradiction (4), footnote 3]: “But ‘the least integer not nameable in fewer
than nineteen syllables’ is itself a name consisting of eighteen syllables; hence the
least integer not nameable in fewer than nineteen syllables can be named in eighteen
syllables, which is a contradiction.”

Chaitin’s paradoxical construction which is based upon the Berry paradox can
be expressed by the following sentence [124, 127] which cannot be valid: “the
program which yields the shortest proof that its algorithmic information content is
much greater than its length, say, 1 billion bits.”
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Because such a program, if it existed, purports to prove that its algorithmic infor-
mation content is much greater than its length, say, 1 billion bits. And yet, this
statement is quite short, and certainly less than a billion bits. This is contradictory;
and as a consequence no such program can exist. Stated differently: For every for-
mal system deriving statements of the form I (s) > n, there is a number k such that
no such statement is provable using the given rules of that formal system for any
n > k [161, pp. 265–266]. k can be called the “strength” of such a formal system.
This strength is a limiting measure for the capacity of the formal system to prove
statements about the algorithmic information content of sequences.

One way of interpreting this result is in terms of independence: because more
axioms specify more theorems, different axioms specify different theorems. That is,
it is the choice of the formalist which deductive mathematical universe is created by
the assumptions [270, p. 38].

A.5 Abundance of True Yet Unprovable Statements

In view of the aforementioned incompleteness and independence result one may
ask [132, p. 148]: “How common is incompleteness and unprovability? Is it a very
bizarre pathological case, or is it pervasive and quite common?”

Indeed, just as the set of computable reals is “meagre” in the set of reals, so is
the set of provable (by constructive, algorithmic methods) theorems “meagre” with
respect to all true theorems of mathematics. This has been proven in a topological
sense of “meagre” in the context of Gödel–Turing type incompleteness [105] (and
not in the sense of independence of, say, the continuum hypothesis).

Rice’s theorem [432] asserts that all non-trivial, (semantic) functional properties
of programs are undecidable. A functional property is one (i) describing how some
functions performs in terms of its input/output behavior, and (ii) which is non-trivial
in the sense that some (of all perceivable) programs which have this input/output
behavior, and other programs which don’t. Rice’s theorem can be algorithmically
proven by reduction to the halting problem: Suppose there is an algorithm A deciding
whether or not any given function or algorithm B has any functional property. Then
we can define another program C which first solves the halting problem for some
other arbitrary function D, clears the memory, and consecutively executes a program
E with has the respective functional property decided by A. As long as D halts,
all may go well. But if D does not halt, the program C never clears the memory,
and can never execute a program E with the respective functional property. Now, if
one inserts C into A, in order to be able to decide (positively) about the functional
property of E – and thus of C – A would have to be able to solve the halting problem
for D first; a task which is provable impossible by algorithmic means.

As Yanofsky observes this bears some similarity to the downward Löwenheim-
Skolem [580, footnote 20, p. 375], “stating that if there is a consistent way of using
a language [[statements in mathematics . . . written with a finite set of symbols]] to
talk about such a system [[with an uncountably infinite number of elements]], then
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that language might very well be talking about a system with only a countably infinite
number of elements. That is, the axioms might be intended for discussing something
uncountably infinite, but we really cannot show that it is has more than a countably
infinite number of elements.”

A.6 Halting Probability Ω

The program lengths |pi | of q algorithms pi , i = 1, . . . , q encoded by binary prefix
free codes on a universal computer satisfies the Kraft inequality

0 ≤
q∑

i=1

2−|pi | ≤ 1. (A.3)

These bounds are motivation to define Chaitin’s halting probability [126, 135,
136]Ω by the sum of the weighted length of all binary prefix free encoded programs
p on a given universal computer which halt:

Ω =
∑

p halt

2−|p|. (A.4)

Ω is Borel normal in any base [123], and “highly incomputable” as it requires the
solution to all halting problems. Conversely, knowledge of Ω , at least up to some
degree, entails the solution of decision problems associated with halting problems:
for instance, the Goldbach conjecture (“every even number greater than 2 can be
represented as the sum of two primes”) can be rephrased as a halting problem by
parsing through all cases and halting if one of them fails.

Despite this obvious computational hardness, the initial bits ofΩ canbe computed,
or at least estimated up to some small degree [111, 129, 134]. This is related to the fact
that very small-size programs still “converge fast” – that is, they soon halt – if ever;
and, because of the exponentially decreasing weight with length, those programs
contribute more to Ω as longer ones. But because of the recursive unsolvability of
the halting problem there exists no computable rate of convergence. In particular,
as we shall see next, halting times grow faster than every computable function of
program length.

A.7 Busy Beaver Function and Maximal Execution and
Recurrence Time

Suppose one considers all programs (on a particular computer) up to length n. The
busy beaver functionΣ(n) of n is the largest number producible by such a programs
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of length n before halting [71, 168, 426]. (Note that non-halting programs, possibly
producing infinite numbers, for example by a non-terminating loop, do not apply.)

Alternatively, in terms of algorithmic information content, the busy beaver func-
tion Σ(n) can be defined as the largest number (of bits) whose algorithmic informa-
tion content is less than or equal to n [125, 128]; that is, Σ(n) = maxI (k)≤n k [125,
Definition 5.3, p. 414].

Σ(n) grows faster than any computable function of n and therefore is incom-
putable. Let us follow Chaitin [128] and suppose that n is greater than I ( f ) + O(1),
the algorithmic information content of f (in terms of its binary code) plus a positive
constant.

For the computation of f (n) + 1 it suffices to know a minimal-size program to
compute f , as well as the value of n, or, even more economically, the value of n −
I ( f ). Thus, I ( f (n) + 1) ≤ I ( f ) + I (log2 |n − I ( f )|) ≤ I ( f ) + I (log2 |I ( f ) +
O(1) − I ( f )|) = I ( f ) + I (log2 O(1)) < I ( f ) + I (O(1)) < I ( f ) + O(1) < n.
Therefore, by the definition of Σ(n), f (n) + 1 is included in Σ(n); that is, Σ(n) ≥
f (n) + 1 if n > I ( f ) + O(1).
A related question is about the maximal execution or run-time of a halting algo-

rithm of length smaller than or equal to n: what is minimum time S(n) – or, alterna-
tively, recurrence time – such that all programs of length at most n bits which halt
have done so; that is, have terminated or, alternatively, are recurring?

An answer to this question will explain just how long it may take for the most
time-consuming program of length n bits to halt. That, of course, is a worst-case
scenario. Many programs of length n bits will have halted long before this maximal
halting time [115]. S(n) can be estimated in terms of Σ(n) by two bounds; one from
below and one from above. The bound from below is rather straightforward: Since
the printout of any symbol requires at least a unit time step, Σ(n) can be interpreted
as a sort of counter variable. Thus a first estimate is S(n) ≥ Σ(n); that is, S(n) grows
faster than any computable function of n.

A bound from above can be conceptualized in terms of an “inner dialogue” of an
algorithmwhich can be published – that is, printed – with little algorithmic overhead.
Stated differently, every “algorithmic contemplation” or “symbolic computation”
could, with a little overhead [symbolized by “of the order of” O(·)], be transformed
into a “printout” of this “monologue” directed towards the outside world, whose
size in turn cannot exceed Σ(n + O(1)) [125]. This yields a bound from above
S(n) ≤ O (Σ(n + O(1))) [101]. Thus the busy beaver function can serve as some
sort of measure of what some algorithm can(not) do before it halts. In this sense
“expressing something to the world” can be equated to “contemplating internally.”

A simulation of the original computation yields bounds Σ(3n + O(1)) [51, 52]
for any program of size n bits to either halt, or else never to halt.

Knowledge of the maximal halting time – in particular, some computable upper
bound onΣ – would solve the halting problem quantitatively because if the maximal
halting time were known and bounded by any computable function of the program
size of n bits, one would have to wait just a little longer than the maximal halting
time to make sure that every program of length n – also this particular program, if
it is destined for termination – has terminated. Otherwise, the program would run
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forever. Hence, because of the recursive unsolvability of the halting problem the
maximal halting time cannot be a computable function.

As a consequence, the upper bounds for the recurrence of any kind of physical
behaviour can be expressed in terms of the busy beaver function [499]. In particular,
for deterministic systems representable by n bits the maximal recurrence time grows
faster than any computable number of n. This maximal estimate related to possible
behaviours may be interpreted quite generally as a measure of the impossibility to
predict and forecast such behaviours by algorithmic means.

Just as for Ω , knowledge of busy beaver function and thus the maximal halting
time at least up to some degree, entails the solution of decision problems associated
with halting problems. But these capacities, at least with computable means, are
forever blocked by recursion theoretic incomputability.

A.8 Some Speculations on Primordial Chaos and
Unlimited Information Content

Chaitin’s independence theorem discussed earlier imposes quantitative bounds on
formal expressability: essentially [that is, up to O(1)] it is impossible to “squeeze
out” (in terms of proofs of theorems, and with a caveat [325]) of a formal system
much more than one has put in. If one wants more provable theorems one has to
assume more. There appears to be no “pay once eat all scenario” envisaged by
Hilbert. This, flamboyantly speaking, “garbage in, garbage out” situation fits well
with means relativity and intrinsic perception of embedded observers: as there is no
external point of view from which to execute omniscience the only possibility is to
perform relative to the (intrinsic) means available.

There is, however, another option not excluded by Chaitin’s limiting theorems:
the possibility to obtain a system of arbitrary algorithmic information content by
considering subsequences of infinite sequences interpreted as formal systems, or as
axioms thereof. There are two extreme scenarios which could be imagined: in the
first scenario, a “primordial chaos” is taken as a resource. In the second scenario, the
continuum of all infinite binary sequences 2ω is approximated by a nonterminating
process of generating it.

In both cases partial sequences could in principle be taken as a basis represen-
tation for axiomatic systems. And in both cases the encoded axiomatic systems are
potentially infinite, with an unlimited algorithmic information content.
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Two Particle Correlations and Expectations

B.1 Two Two-State Particle Correlations and Expectations

As has already been pointed out earlier, due to the Einstein–Podolsky–Rosen explo-
sion type setup [196] in certain (singlet) states allowing for uniqueness [448, 508,
514] through counterfactual reasoning, second order correlations appear feasible
(subject to counterfactual existence).

B.1.1 Classical Correlations with Dichotomic Observables in
a “Singlet” State

For dichotomic observableswith twooutcomes {0, 1} the classical expectations in the
plane perpendicular to the direction connecting the two particles is a linear function
of the measurement angle [388]. Assume the uniform distribution of (opposite but
otherwise) identical “angular momenta” shared by the two particles and lying on the
circumference of the unit circle, as depicted in Fig.B.1; and consider only the sign
of these angular momenta.

The arc lengths on the unit circle A+(θ1, θ2) and A−(θ1, θ2), normalized by the
circumference of the unit circle, correspond to the frequency of occurrence of even
(“++” and “−−”) and odd (“+−” and (“−+”) parity pairs of events, respectively.
Thus, A+(θ1, θ2) and A−(θ1, θ2) are proportional to the positive and negative con-
tributions to the correlation coefficient. One obtains for 0 ≤ θ = |θ1 − θ2| ≤ π; i.e.,

Ec,2,2(θ) = Ec,2,2(θ1, θ2) = 1

2π

[
A+(θ1, θ2) − A−(θ1, θ2)

]

= 1

2π

[
2A+(θ1, θ2) − 2π

] = 2

π
|θ1 − θ2| − 1 = 2

π
θ − 1,

(B.1)
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Fig. B.1 Planar geometry demonstrating the classical two two-state particles correlation. The left
circle represents the positions on the unit circle which correspond to positive or negative measure-
ment results O(θ1) ∈ {0, 1} “along” direction θ1, respectively. The second circle represents the posi-
tions on the unit circle which correspond to positive or negative measurement results O(θ2) ∈ {0, 1}
“along” direction θ2, respectively. The right circle represents the positions on the unit circle which
correspond to positive or negative products O(θ1)O(θ2) ∈ {0, 1} of joint measurements “along”
directions θ1 and θ2. As only the absolute value of the difference of the two angles θ1 and θ2 enters,
one may set |θ1 − θ2| = θ

where the subscripts stand for the number of mutually exclusive measurement
outcomes per particle, and for the number of particles, respectively. Note that
A+(θ1, θ2) + A−(θ1, θ2) = 2π.

B.1.2 Quantum Dichotomic Case

The two spin one-half particle case is one of the standard quantum mechanical
exercises, although it is seldom computed explicitly. For the sake of completeness
and with the prospect to generalize the results to more particles of higher spin,
this case will be enumerated explicitly. In what follows, we shall use the following
notation: Let |+〉 denote the pure state corresponding to (1, 0)ᵀ, and |−〉 denote the
orthogonal pure state corresponding to (0, 1)ᵀ.

B.1.2.1 Single Particle Observables and Projection Operators

Let us start with the spin one-half angular momentum observables of a single particle
along an arbitrary direction in spherical co-ordinates θ and ϕ in units of � [447]; that
is,

Mx = 1

2

(
0 1
1 0

)
,My = 1

2

(
0 −i
i 0

)
,Mz = 1

2

(
1 0
0 −1

)
. (B.2)

The angular momentum operator in some direction specified by θ, ϕ is given by the
spectral decomposition
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S 1
2
(θ,ϕ) = xMx + yMy + zMz

= Mx sin θ cosϕ + My sin θ sinϕ + Mz cos θ

= 1

2
σ(θ,ϕ) = 1

2

(
cos θ e−iϕ sin θ

eiϕ sin θ − cos θ

)

= −1

2

(
sin2 θ

2 − 1
2e−iϕ sin θ

− 1
2eiϕ sin θ cos2 θ

2

)
+

+ 1

2

(
cos2 θ

2
1
2e−iϕ sin θ

1
2eiϕ sin θ sin2 θ

2

)

= 1

2

{
1

2
[I2 + σ(θ,ϕ)] − 1

2
[I2 − σ(θ,ϕ)]

}

= 1

2

[
F+(θ,ϕ) − F−(θ,ϕ)

]
.

(B.3)

The orthonormal eigenstates (eigenvectors) associated with the eigenvalues − 1
2

and + 1
2 of S 1

2
(θ,ϕ) in Eq. (B.3) are

|+〉θ,ϕ = eiδ−
(

e− iϕ
2 cos θ

2 , e
iϕ
2 sin θ

2

)ᵀ
,

|−〉θ,ϕ = eiδ+
(
−e− iϕ

2 sin θ
2 , e

iϕ
2 cos θ

2

)ᵀ
,

(B.4)

respectively. δ+ and δ− are arbitrary phases. These orthogonal unit vectors correspond
to the two orthogonal projectors

F±(θ,ϕ) = |±〉θ,ϕ〈±|θ,ϕ = 1

2
[I2 ± σ(θ,ϕ)] (B.5)

for the “+” and “−” states along θ and ϕ, respectively. By setting all the phases and
angles to zero, one obtains the original orthonormalized basis {|−〉, |+〉}.

B.1.2.2 Substitution Rules for Probabilities and Correlations

In order to evaluate Boole’s classical conditions of possible experience, and check for
quantumviolations of them, the classical probabilities and correlations entering those
classical conditions of possible experience have to be compared to, and substituted
by, quantum probabilities and correlations derived earlier. For example, for n spin-
1
2 particles in states (subscript i refers to the i th particle) “+i” or “−i” along the
directions θ1,ϕ1, θ2,ϕ2, . . . , θn,ϕn , the classical-to-quantum substitutions are [212,
448, 513]:
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p1,±1 → q1,±1 = 1

2
[I2 ± σ(θ1,ϕ1)] ⊗ I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸

n − 1 factors

,

p2,±2 → q2,±2 = I2 ⊗ 1

2
[I2 ± σ(θ2,ϕ2)] ⊗ I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸

n − 2 factors

,

...

p1,±1,2,±2 → q1,±1,2,±2 =
= 1

2
[I2 ± σ(θ1,ϕ1)] ⊗ 1

2
[I2 ± σ(θ2,ϕ2)] ⊗ I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸

n − 2 factors

,

...

p1,±1,2,±2,...,(n−1),±n−1,n,±n →
→ q1,±1,2,±2,...,(n−1),±n−1,n,±n =

= 1

2
[I2 ± σ(θ1,ϕ1)] ⊗ 1

2
[I2 ± σ(θ2,ϕ2)] ⊗ · · ·

· · · ⊗ 1

2
[I2 ± σ(θn,ϕn)] ;

(B.6)

with σ(θ,ϕ) defined in Eq. (B.3).

B.1.2.3 Quantum Correlations for the Singlet State

The two-partite quantum expectations corresponding to the classical expectation
value Ec,2,2 in Eq. (B.1) can be defined to be the difference between the probabilities
to find the two particles in identical spin states (along arbitrary directions) minus the
probabilities to find the two particles in different spin states (along those directions);
that is, Eq,2,2 = q++ + q−− − (q+− + q−+), or q=q++ + q−− = 1

2

(
1 + Eq,2,2

)
and

q = = q+− + q−+ = 1
2

(
1 − Eq,2,2

)
.

In what follows, singlet states |Ψd,n,i 〉 will be labelled by three numbers d, n
and i , denoting the number d of outcomes associated with the dimension of Hilbert
space per particle, the number n of participating particles, and the state count i in
an enumeration of all possible singlet states of n particles of spin j = (d − 1)/2,
respectively. For n = 2, there is only one singlet state (seeRef. [448] formore general
cases).

Consider the singlet “Bell” state of two spin- 12 particles
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|Ψ2,2,1〉 = 1√
2

(| + −〉 − | − +〉)

= 1√
2

[
(1, 0)ᵀ ⊗ (0, 1)ᵀ − (0, 1)ᵀ ⊗ (1, 0)ᵀ]

=
(
0,

1√
2
,− 1√

2
, 0

)ᵀ
.

(B.7)

The density operator ρΨ2,2,1 = |Ψ2,2,1〉〈Ψ2,2,1| is just the projector of the dyadic prod-
uct of this vector.

Singlet states are form invariant with respect to arbitrary unitary transforma-
tions in the single-particle Hilbert spaces and thus also rotationally invariant in
configuration space, in particular under the rotations [29, Eqs. (7)–(49)] |+〉 =
ei ϕ

2
(
cos θ

2 |+′〉 − sin θ
2 |−′〉) and |−〉 = e−i ϕ

2
(
sin θ

2 |+′〉 + cos θ
2 |−′〉).

The Bell singlet state satisfies the uniqueness property [508] in the sense that
the outcome of a spin state measurement along a particular direction on one parti-
cle “fixes” also the opposite outcome of a spin state measurement along the same
direction on its “partner” particle: (assuming lossless devices) whenever a “plus” or
a “minus” is recorded on one side, a “minus” or a “plus” is recorded on the other
side, and vice versa.

B.1.2.4 Quantum Predictions

We now turn to the calculation of quantum predictions. The joint probability to
register the spins of the two particles in state ρΨ2,2,1 aligned or anti-aligned along
the directions defined by (θ1, ϕ1) and (θ2, ϕ2) can be evaluated by a straightforward
calculation of

qΨ2,2,1 ±1±2 (θ1,ϕ1; θ2,ϕ2)

= Tr
{
ρΨ2,2,1 · [

F±1 (θ1,ϕ1) ⊗ F±2 (θ2,ϕ2)
]}

= 1

4

{
1 − (±11)(±21)

[
cos θ1 cos θ2 +

+ sin θ1 sin θ2 cos(ϕ1 − ϕ2)
]}

.

(B.8)

Since q= + q = = 1 and Eq,2,2 = q= − q =, the joint probabilities to find the two
particles in an even or in an odd number of spin-“− 1

2 ”-states when measured along
(θ1, ϕ1) and (θ2, ϕ2) are in terms of the correlation coefficient given by
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q= = q++ + q−− = 1

2

(
1 + Eq,2,2

)

= 1

2
{1 − [cos θ1 cos θ2 − sin θ1 sin θ2 cos(ϕ1 − ϕ2)]} ,

q = = q+− + q−+ = 1

2

(
1 − Eq,2,2

)

= 1

2
{1 + [cos θ1 cos θ2 + sin θ1 sin θ2 cos(ϕ1 − ϕ2)]} .

(B.9)

Finally, the quantum mechanical correlation is obtained by the difference
q= − q =; i.e.,

Eq,2,2 (θ1,ϕ1, θ2,ϕ2) =
= − [cos θ1 cos θ2 + cos(ϕ1 − ϕ2) sin θ1 sin θ2] .

(B.10)

By setting either the azimuthal angle differences equal to zero, or by assuming
measurements in the plane perpendicular to the direction of particle propagation,
i.e., with θ1 = θ2 = π

2 , one obtains

Eq,2,2(θ1, θ2) = − cos(θ1 − θ2),

Eq,2,2

(π

2
,
π

2
,ϕ1,ϕ2

)
= − cos(ϕ1 − ϕ2).

(B.11)

B.2 Two Three-State Particles

B.2.1 Observables

The single particle spin one angular momentum observables in units of � are given
by [447]

Mx = 1√
2

⎛

⎝
0 1 0
1 0 1
0 1 0

⎞

⎠ ,My = 1√
2

⎛

⎝
0 −i 0
i 0 −i
0 i 0

⎞

⎠ ,

Mz =
⎛

⎝
1 0 0
0 0 0
0 0 −1

⎞

⎠ .

(B.12)

Again, the angular momentum operator in arbitrary direction θ, ϕ is given by its
spectral decomposition
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S1(θ,ϕ) = xMx + yMy + zMz

= Mx sin θ cosϕ + My sin θ sinϕ + Mz cos θ

=
⎛

⎜⎝
cos θ e−iϕ sin θ√

2
0

eiϕ sin θ√
2

0 e−iϕ sin θ√
2

0 eiϕ sin θ√
2

− cos θ

⎞

⎟⎠

= −F−(θ,ϕ) + 0 · F0(θ,ϕ) + F+(θ,ϕ),

(B.13)

where the orthogonal projectors associated with the eigenstates of S1(θ,ϕ) are

F− =
⎛

⎜⎝

sin2 θ
2 − e−iϕ cos θ sin θ√

2
− 1

2e−2iϕ sin2 θ

− eiϕ cos θ sin θ√
2

cos2 θ e−iϕ cos θ sin θ√
2

− 1
2e2iϕ sin2 θ eiϕ cos θ sin θ√

2
sin2 θ
2

⎞

⎟⎠ ,

F0 =

⎛

⎜⎜⎝

cos4 θ
2

e−iϕ cos2 θ
2 sin θ√

2
1
4e−2iϕ sin2 θ

eiϕ cos2 θ
2 sin θ√
2

sin2 θ
2

e−iϕ sin2 θ
2 sin θ√

2
1
4e2iϕ sin2 θ

eiϕ sin2 θ
2 sin θ√
2

sin4 θ
2

⎞

⎟⎟⎠

F+ =

⎛

⎜⎜⎝

sin4 θ
2 − e−iϕ sin2 θ

2 sin θ√
2

1
4e−2iϕ sin2 θ

− eiϕ sin2 θ
2 sin θ√
2

sin2 θ
2 − e−iϕ cos2 θ

2 sin θ√
2

1
4e2iϕ sin2 θ − eiϕ cos2 θ

2 sin θ√
2

cos4 θ
2

⎞

⎟⎟⎠ .

(B.14)

Theorthonormal eigenstates associatedwith the eigenvalues+1, 0,−1ofS1(θ,ϕ)

in Eq. (B.13) are

|−〉θ,ϕ = eiδ0
(
− 1√

2
e−iϕ sin θ, cos θ, 1√

2
eiϕ sin θ

)ᵀ
,

|0〉θ,ϕ = eiδ+1

(
e−iϕ cos2 θ

2 ,
1√
2
sin θ, eiϕ sin2 θ

2

)ᵀ
,

|+〉θ,ϕ = eiδ−1

(
e−iϕ sin2 θ

2 ,− 1√
2
sin θ, eiϕ cos2 θ

2

)ᵀ
,

(B.15)

respectively. For vanishing angles θ = ϕ = 0, |−〉 = (0, 1, 0)ᵀ, |0〉 = (1, 0, 0)ᵀ, and
|+〉 = (0, 0, 1)ᵀ, respectively.

B.2.2 Singlet State

Consider the two spin-one particle singlet state

|Ψ3,2,1〉 = 1√
3

(−|00〉 + | − +〉 + | + −〉) . (B.16)
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Its vector space representation can be explicitly enumerated by taking the direction
θ = ϕ = 0 and recalling that |+〉 = (1, 0, 0)ᵀ, |0〉 = (0, 1, 0)ᵀ, and |−〉 = (0, 0, 1)ᵀ;
i.e.,

|Ψ3,2,1〉 = 1√
3

(0, 0, 1, 0,−1, 0, 1, 0, 0)ᵀ . (B.17)

B.3 Two Four-State Particles

B.3.1 Observables

The spin three-half angular momentum observables in units of � are given by [447]

Mx = 1

2

⎛

⎜⎜⎝

0
√
3 0 0√

3 0 2 0
0 2 0

√
3

0 0
√
3 0

⎞

⎟⎟⎠ ,

My = 1

2

⎛

⎜⎜⎝

0 −√
3i 0 0√

3i 0 −2i 0
0 2i 0 −√

3i
0 0

√
3i 0

⎞

⎟⎟⎠ ,

Mz = 1

2

⎛

⎜⎜⎝

3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

⎞

⎟⎟⎠ .

(B.18)

Again, the angular momentum operator in arbitrary direction θ, ϕ can be written
in its spectral form

S 3
2
(θ,ϕ) = xMx + yMy + zMz

= Mx sin θ cosϕ + My sin θ sinϕ + Mz cos θ

=

⎛

⎜⎜⎜⎝

3 cos θ
2

√
3
2 e−iϕ sin θ 0 0√

3
2 eiϕ sin θ cos θ

2 e−iϕ sin θ 0

0 eiϕ sin θ − cos θ
2

√
3
2 e−iϕ sin θ

0 0
√
3
2 eiϕ sin θ − 3 cos θ

2

⎞

⎟⎟⎟⎠

= −3

2
F− 3

2
− 1

2
F− 1

2
+ 1

2
F+ 1

2
+ 3

2
F+ 3

2
.

(B.19)
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B.3.2 Singlet State

The singlet state of two spin-3/2 observables can be found by the general methods
developed in Ref. [448]. In this case, this amounts to summing all possible two-
partite states yielding zero angular momentum, multiplied with the corresponding
Clebsch-Gordan coefficients

〈 j1m1 j2m2|00〉 = δ j1, j2δm1,−m2

(−1) j1−m1

√
2 j1 + 1

(B.20)

of mutually negative single particle states resulting in total angular momentum zero.
More explicitly, for j1 = j2 = 3

2 , |ψ4,2,1〉 can be written as

1

2

(∣∣∣∣
3

2
,−3

2

〉
−

∣∣∣∣−
3

2
,
3

2

〉
−

∣∣∣∣
1

2
,−1

2

〉
+

∣∣∣∣−
1

2
,
1

2

〉)
. (B.21)

Again, this two-partite singlet state satisfies the uniqueness property. The four dif-
ferent spin states can be identified with the Cartesian basis of 4-dimensional Hilbert
space

∣∣ 3
2

〉 = (1, 0, 0, 0)ᵀ,
∣∣ 1
2

〉 = (0, 1, 0, 0)ᵀ,
∣∣− 1

2

〉 = (0, 0, 1, 0)ᵀ, and
∣∣− 3

2

〉 =
(0, 0, 0, 1)ᵀ, respectively, so that

|ψ4,2,1〉 = (0, 0, 0, 1, 0, 0,−1, 0, 0, 0, 1, 0,−1, 0, 0, 0)ᵀ . (B.22)

B.4 General Case of Two Spin j Particles in a Singlet State

The general case of spin correlation values of two particles with arbitrary spin j (see
theAppendix of Ref. [321] for a group theoretic derivation) can be directly calculated
in an analogous way, yielding

EΨ2,2 j+1,1(θ1,ϕ1; θ2,ϕ2) ∝
∝ Tr

{
ρΨ2,2 j+1,1

[
S j (θ1,ϕ1) ⊗ S j (θ2,ϕ2)

]}

= − j (1 + j)

3
[cos θ1 cos θ2 + cos(ϕ1 − ϕ2) sin θ1 sin θ2] .

(B.23)

Thus, the functional form of the two-particle correlation coefficients based on
spin state observables is independent of the absolute spin value.
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328. Länger, H., Maçzyński, M.J.: On a characterization of probability measures on Boolean alge-
bras and some orthomodular lattices. Math. Slovaca 45(5), 455–468 (1995). http://eudml.org/
doc/32311

329. Laraudogoitia, J.P.: On Norton’s dome. Synthese 190(14), 2925–2941 (2013). https://doi.org/
10.1007/s11229-012-0105-z

330. Lawvere, F.W.: Diagonal arguments and cartesian closed categories. Lect. Notes Math. 92,
134–145 (1969). https://doi.org/10.1007/BFb0080769 (Proceedings of theConference held at
the Seattle Research Center of the Battelle Memorial Institute, 24 June–19 July 1968, Volume
two)

331. Lee, H.D.P.: Zeno of Elea. Cambridge University Press, Cambridge (1936)
332. Leff, H.S., Rex,A.F.:Maxwell’sDemon 2. Computing. Institute of Physics Publishing, Bristol

and Philadelphia, Entropy, Classical and Quantum Information (1990)

https://doi.org/10.1007/978-3-642-58822-8
http://arxiv.org/abs/quant-ph/0206012
https://doi.org/10.1103/PhysRevLett.101.020403
https://doi.org/10.1103/PhysRevLett.101.020403
https://www.elsevier.com/books/the-theory-of-models/addison/978-0-7204-2233-7
https://www.elsevier.com/books/the-theory-of-models/addison/978-0-7204-2233-7
https://doi.org/10.1512/iumj.1968.17.17004
https://doi.org/10.1512/iumj.1968.17.17004
https://doi.org/10.1080/00207166808803030
https://doi.org/10.1103/PhysRev.133.B542
http://doi.org/10.1007/BF00374597
https://doi.org/10.1007/BF00484949
https://doi.org/10.1007/BF00484949
https://doi.org/10.1023/A:1018821314465
https://doi.org/10.1103/PhysRevLett.85.290
https://doi.org/10.1103/PhysRevA.45.7729
https://doi.org/10.2307/2274821
https://doi.org/10.2307/2274821
https://doi.org/10.2307/2274480
https://doi.org/10.2307/2274480
http://www.ams.org/bookstore-getitem/item=stml-24
http://eudml.org/doc/32311
http://eudml.org/doc/32311
https://doi.org/10.1007/s11229-012-0105-z
https://doi.org/10.1007/s11229-012-0105-z
https://doi.org/10.1007/BFb0080769


204 References

333. Leifer, M.: Is the quantum state real? an extended review of ψ-ontology theorems. Quanta
3(1), 67–155 (2014). https://doi.org/10.12743/quanta.v3i1.22

334. Leitsch, A., Schachner, G., Svozil, K.: How to acknowledge hypercomputation? Complex
Syst. 18, 131–143 (2008). https://www.complex-systems.com/pdf/18-1-6.pdf

335. Levin, L.A.: Laws of information conservation (nongrowth) and aspects of the foundation of
probability theory. Problemy Peredachi Informatsii, Probl. Inf. Transm. 10(3), 30–35, 206–
210 (1974)

336. Li, M., Vitányi, P.M.B.: Inductive reasoning and Kolmogorov complexity. J. Comput. Syst.
Sci. 44, 343–384 (1992). https://doi.org/10.1016/0022-0000(92)90026-F

337. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and Its Applications,
3rd edn. Springer, New York (2008). https://doi.org/10.1007/978-0-387-49820-1

338. Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Springer, New York
(1983)

339. Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge Uni-
versity Press, Cambridge (1995)

340. Lisonek, P., Badziag, P., Portillo, J.R., Cabello, A.: Kochen-Specker set with seven contexts.
Phys. Rev. A 89, 042101 (2014). https://doi.org/10.1103/PhysRevA.89.042101

341. London, F., Bauer, E.: La theorie de l’observation en mécanique quantique; Actualités scien-
tifiques et industrielles: Exposés de physique générale, vol. 775, publiés sous la direction de
Paul Langevin. Hermann (1939). English translation in [338]

342. London, F., Bauer, E.: The theory of observation in quantum mechanics. Quantum Theory
and Measurement, pp. 217–259. Princeton University Press, Princeton (1983). Consolidated
translation of French original [337]

343. Lotka,A.J.: The interventionof consciousness inmechanics. ScienceProgress in theTwentieth
Century (1919–1933), vol. 18(71), 407–419 (1924). http://www.jstor.org/stable/43430892

344. Lucas, J.: Minds, machines and Gödel. The Modeling of Mind: Computers and Intelligence.
University of Notre Dame Press, Literary Licensing, LLC (1963, 2012)

345. Lucas, J.R.: Minds, machines and Gödel. Philosophy 36(137), 112127 (1961). https://doi.
org/10.1017/S0031819100057983. Reprinted in [340]

346. Lüders, G.: Über die Zustandsänderung durch den Meßproze. Ann. Phys. 443(5–8), 322–328
(1950). https://doi.org/10.1002/andp.19504430510

347. Lüders, G.: Concerning the state-change due to the measurement process. Ann. Phys. 15(9),
663–670 (2006). https://doi.org/10.1002/andp.200610207

348. Ludwig, G.: Der Meßprozeß. Zeitschrift für Physik 135(5), 483–511 (1953). https://doi.org/
10.1007/BF01338813

349. Lyapunov,A.M.: The general problemof the stability ofmotion. Int. J. Control 55(3), 531–534
(1992). https://doi.org/10.1080/00207179208934253

350. Macchiavello, C., Palma, G.M., Zeilinger, A.: Quantum Computation and Quantum Informa-
tion Theory. World Scientific, Singapore (2001). https://doi.org/10.1142/9789810248185

351. Mackey, G.W.: Quantummechanics and Hilbert space. Am.Math. Mon. 64(8), 45–57 (1957).
https://doi.org/10.2307/2308516 (Part 2: To Lester R. Ford on His Seventieth Birthday)

352. Manchak, J., Roberts, B.W.: Supertasks. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of
Philosophy,Winter 2016 edn.Metaphysics Research Lab, Stanford University (2016). https://
plato.stanford.edu/archives/win2016/entries/spacetime-supertasks

353. Martin-Löf, P.: The definition of random sequences. Inf. Control 9(6), 602–619 (1966). https://
doi.org/10.1016/S0019-9958(66)80018-9; https://doi.org/10.1016/0030-4018(87)90271-9

354. Martin-Löf, P.: Notes on Constructive Mathematics. Almqvist & Wiksell, Stockholm (1970)
355. Martin-Löf, P.: On the notion of randomness. In: Kino, A., Myhill, J., Vesley, R.E. (eds.)

Intuitionism and Proof Theory, p. 73. North-Holland, Amsterdam and London (1970)
356. Mathen, J.: On the inherent incompleteness of scientific theories (2011). http://www.activitas.

org/index.php/nervosa/article/view/111
357. Mathen, J.: On self-referential theory-dependent observation circularities (2017)
358. Maxwell, J.C.: Tait’s “Thermodynamics”. Nature 17, 278–280 (1878). https://doi.org/10.

1038/017278a0

https://doi.org/10.12743/quanta.v3i1.22
https://www.complex-systems.com/pdf/18-1-6.pdf
https://doi.org/10.1016/0022-0000(92)90026-F
https://doi.org/10.1007/978-0-387-49820-1
https://doi.org/10.1103/PhysRevA.89.042101
http://www.jstor.org/stable/43430892
https://doi.org/10.1017/S0031819100057983
https://doi.org/10.1017/S0031819100057983
https://doi.org/10.1002/andp.19504430510
https://doi.org/10.1002/andp.200610207
https://doi.org/10.1007/BF01338813
https://doi.org/10.1007/BF01338813
https://doi.org/10.1080/00207179208934253
https://doi.org/10.1142/9789810248185
https://doi.org/10.2307/2308516
https://plato.stanford.edu/archives/win2016/entries/spacetime-supertasks
https://plato.stanford.edu/archives/win2016/entries/spacetime-supertasks
https://doi.org/10.1016/S0019-9958(66)80018-9
https://doi.org/10.1016/S0019-9958(66)80018-9
https://doi.org/10.1016/0030-4018(87)90271-9
http://www.activitas.org/index.php/nervosa/article/view/111
http://www.activitas.org/index.php/nervosa/article/view/111
https://doi.org/10.1038/017278a0
https://doi.org/10.1038/017278a0


References 205

359. Maxwell, J.C.: Does the progress of physical science tend to give any advantage to the opin-
ion of necessity (or determinism) over that of the contingency of events and the freedom
of the will? In: Campbell, L., Garnett, W. (eds.) The Life of James Clerk Maxwell. With a
Selection from His Correspondence and Occasional Writings and a Sketch of His Contri-
butions to Science, 2nd edn. MacMillan, London (1882, 1999). https://archive.org/details/
lifeofjamesclerk00camprich

360. May,R.M.: Simplemathematicalmodelswith very complicated dynamics.Nature 261 (1976).
https://doi.org/10.1038/261459a0

361. McMullen, P., Shephard, G.C.: Convex Polytopes and the Upper Bound Conjecture. London
Mathematical Society Lecture Notes Series, vol. 3. Cambridge University Press, Cambridge
(1971)

362. Mermin, D.N.: Could Feynman have said this? Phys. Today 57, 10–11 (1989). https://doi.
org/10.1063/1.1768652

363. Mermin, D.N.: What’s wrong with this pillow? Phys. Today 42, 9–11 (1989). https://doi.org/
10.1063/1.2810963

364. Mermin, D.N.: Hidden variables and the two theorems of John Bell. Rev. Mod. Phys. 65,
803–815 (1993). https://doi.org/10.1103/RevModPhys.65.803

365. Mermin, D.N.: What is quantum mechanics trying to tell us? Am. J. Phys. 66(9), 753–767
(1998). https://doi.org/10.1119/1.18955

366. Mermin, D.N.: A Kochen-Specker theorem for imprecisely specified measurement (1999).
http://xxx.lanl.gov/abs/quant-ph/9912081

367. Mermin, D.N.: Lecture notes on quantum computation (2002–2008). http://www.lassp.
cornell.edu/mermin/qcomp/CS483.html. Accessed 2 Jan 2017

368. Mermin, D.N.: QuantumComputer Science. Cambridge University Press, Cambridge (2007).
http://people.ccmr.cornell.edu/~mermin/qcomp/CS483.html

369. Meyer, D.A.: Finite precision measurement nullifies the Kochen-Specker theorem. Phys. Rev.
Lett. 83(19), 3751–3754 (1999). https://doi.org/10.1103/PhysRevLett.83.3751

370. Milonni, P.W.: The Quantum Vacuum. An Introduction to Quantum Electrodynamics. Aca-
demic Press, San Diego (1994)

371. Montanaro, A.: Quantum algorithms: an overview. Npj Quantum Inf. 2, 15023 (2016). https://
doi.org/10.1038/npjqi.2015.23

372. Moore, C.D.: Unpredictability and undecidability in dynamical systems. Phys. Rev. Lett. 64,
2354–2357 (1990). https://doi.org/10.1103/PhysRevLett.64.2354 (Cf. Ch. Bennett, Nature,
346, 606 (1990))

373. Moore, E.F.: Gedanken-experiments on sequential machines. In: Shannon, C.E., McCarthy, J.
(eds.) Automata Studies (AM-34), pp. 129–153. PrincetonUniversity Press, Princeton (1956).
https://doi.org/10.1515/9781400882618-006

374. Mordvintsev, A., Olah, C., Tyka, M.: Inceptionism: going deeper into neural net-
works (2015). https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-
neural.html. Accessed 10 Mar 2017

375. Myrvold, W.C.: Statistical mechanics and thermodynamics: a Maxwellian view. Stud. Hist.
Philos. Sci. Part B: Stud. Hist. Philos. Mod. Phys. 42(4), 237–243 (2011). https://doi.org/10.
1016/j.shpsb.2011.07.001

376. Navara, M., Rogalewicz, V.: The pasting constructions for orthomodular posets. Math. Nachr.
154, 157–168 (1991). https://doi.org/10.1002/mana.19911540113

377. Nietzsche, F.: Ecce homo. Wie man wird, was man ist (1908, 2009). http://www.
nietzschesource.org/#eKGWB/EH (Digital critical edition of the complete works and let-
ters, based on the critical text by G. Colli and M. Montinari, Berlin/New York, de Gruyter
1967, edited by Paolo D’Iorio)

378. Nishimura, H., Ozawa, M.: Perfect computational equivalence between quantum turing
machines and finitely generated uniform quantum circuit families. Quantum Inf. Process.
8 (2009). https://doi.org/10.1007/s11128-008-0091-8

379. Norton, J.: The dome: an unexpectedly simple failure of determinism. Philos. Sci. 75(5),
786–798 (2008). https://doi.org/10.1086/594524

https://archive.org/details/lifeofjamesclerk00camprich
https://archive.org/details/lifeofjamesclerk00camprich
https://doi.org/10.1038/261459a0
https://doi.org/10.1063/1.1768652
https://doi.org/10.1063/1.1768652
https://doi.org/10.1063/1.2810963
https://doi.org/10.1063/1.2810963
https://doi.org/10.1103/RevModPhys.65.803
https://doi.org/10.1119/1.18955
http://xxx.lanl.gov/abs/quant-ph/9912081
http://www.lassp.cornell.edu/mermin/qcomp/CS483.html
http://www.lassp.cornell.edu/mermin/qcomp/CS483.html
http://people.ccmr.cornell.edu/~mermin/qcomp/CS483.html
https://doi.org/10.1103/PhysRevLett.83.3751
https://doi.org/10.1038/npjqi.2015.23
https://doi.org/10.1038/npjqi.2015.23
https://doi.org/10.1103/PhysRevLett.64.2354
https://doi.org/10.1515/9781400882618-006
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://doi.org/10.1016/j.shpsb.2011.07.001
https://doi.org/10.1016/j.shpsb.2011.07.001
https://doi.org/10.1002/mana.19911540113
http://www.nietzschesource.org/#eKGWB/EH
http://www.nietzschesource.org/#eKGWB/EH
https://doi.org/10.1007/s11128-008-0091-8
https://doi.org/10.1086/594524


206 References

380. Norton, J.D.: All shook up: fluctuations, Maxwell’s demon and the thermodynamics of com-
putation. Entropy 15(10), 4432–4483 (2013). https://doi.org/10.3390/e15104432

381. Norton, J.D.: The impossible process: thermodynamic reversibility. Stud. Hist. Philos. Sci.
Part B: Stud. Hist. Philos.Mod. Phys. 55, 43–61 (2016). https://doi.org/10.1016/j.shpsb.2016.
08.001

382. Norton, J.: The Material Theory of Induction (2016, 2017). https://www.pitt.edu/~jdnorton/
homepage/cv.html#material_theory. Accessed 20 Mar 2017

383. Pan, J.W., Bouwmeester, D., Daniell, M., Weinfurter, H., Zeilinger, A.: Experimental test
of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement. Nature
403, 515–519 (2000). https://doi.org/10.1038/35000514

384. Pattee, H.H.: Postscript: Unsolved Problems and Potential Applications of Hierarchy Theory,
pp. 111–124. Springer, Netherlands (1973, 2012). https://doi.org/10.1007/978-94-007-5161-
3_7 (Volume 7 of the series Biosemiotics)

385. Pavicic,M.,Merlet, J.P., McKay, B., Megill, N.D.: Kochen-Specker vectors. J. Phys. A:Math.
Gen. 38(7), 1577–1592 (2005). https://doi.org/10.1088/0305-4470/38/7/013

386. Pavicic, M., Merlet, J.P., Megill, N.: Exhaustive enumeration of Kochen-Specker vector sys-
tems. Research Report RR-5388, INRIA (2004). https://hal.inria.fr/inria-00070615. Report
nr. RR-5388

387. Peitgen, H.O., Jürgens, H., Saupe, D.: Chaos and Fractals. New Frontiers of Science, 2nd edn.
Springer, New York (1992, 2004). https://doi.org/10.1007/b97624

388. Peres, A.: Unperformed experiments have no results. Am. J. Phys. 46, 745–747 (1978). https://
doi.org/10.1119/1.11393

389. Peres, A.: Can we undo quantummeasurements? Phys. Rev. D 22(4), 879–883 (1980). https://
doi.org/10.1103/PhysRevD.22.879

390. Peres, A.: Two simple proofs of the Kochen-Specker theorem. J. Phys. A: Math. Gen. 24(4),
L175–L178 (1991). https://doi.org/10.1088/0305-4470/24/4/003

391. Peres, A.: Generalized Kochen-Specker theorem. Found. Phys. 26, 807–812 (1996). https://
doi.org/10.1007/BF02058634

392. Peres, A.: Finite precision measurement nullifies Euclid’s postulates (2003).
arXiv:quant-ph/0310035

393. Petersen, K.: Cambridge University Press, Cambridge (1983)
394. Pfau, T., Spälter, S., Kurtsiefer, C., Ekstrom, C.R., Mlynek, J.: Loss of spatial coherence by

a single spontaneous emission. Phys. Rev. Lett. 73(9), 1223–1226 (1994). https://doi.org/10.
1103/PhysRevLett.73.1223

395. Pironio, S., Acín, A., Massar, S., de la Giroday, A.B., Matsukevich, D.N., Maunz, P., Olm-
schenk, S., Hayes, D., Luo, L., Manning, T.A., Monroe, C.: Random numbers certified by
bell’s theorem. Nature 464(7291), 1021–1024 (2010). https://doi.org/10.1038/nature09008

396. Pitowsky, I.: The range of quantum probabilities. J. Math. Phys. 27(6), 1556–1565 (1986)
397. Pitowsky, I.: From George Boole to John Bell: the origin of Bell’s inequality. In: Kafatos, M.

(ed.) Bell’s Theorem, Quantum Theory and the Conceptions of the Universe. Fundamental
Theories of Physics, vol. 37, pp. 37–49. Kluwer Academic Publishers, Springer, Netherlands
(1989). https://doi.org/10.1007/978-94-017-0849-4_6

398. Pitowsky, I.: Quantum Probability - Quantum Logic. Lecture Notes in Physics, vol. 321.
Springer, Berlin (1989)

399. Pitowsky, I.: Correlation polytopes their geometry and complexity. Math. Program. 50, 395–
414 (1991). https://doi.org/10.1007/BF01594946

400. Pitowsky, I.: George Boole’s ‘conditions of possible experience’ and the quantum puzzle. Br.
J. Philos. Sci. 45, 95–125 (1994). https://doi.org/10.1093/bjps/45.1.95

401. Pitowsky, I.: Infinite and finite Gleason’s theorems and the logic of indeterminacy. J. Math.
Phys. 39(1), 218–228 (1998). https://doi.org/10.1063/1.532334

402. Pitowsky, I.: Range theorems for quantum probability and entanglement. In: Khrennikov,
A. (ed.) Quantum Theory: Reconsideration of Foundations, Proceeding of the 2001 Vaxjo
Conference, pp. 299–308. World Scientific, Singapore (2002)

https://doi.org/10.3390/e15104432
https://doi.org/10.1016/j.shpsb.2016.08.001
https://doi.org/10.1016/j.shpsb.2016.08.001
https://www.pitt.edu/~jdnorton/homepage/cv.html#material_theory
https://www.pitt.edu/~jdnorton/homepage/cv.html#material_theory
https://doi.org/10.1038/35000514
https://doi.org/10.1007/978-94-007-5161-3_7
https://doi.org/10.1007/978-94-007-5161-3_7
https://doi.org/10.1088/0305-4470/38/7/013
https://hal.inria.fr/inria-00070615
https://doi.org/10.1007/b97624
https://doi.org/10.1119/1.11393
https://doi.org/10.1119/1.11393
https://doi.org/10.1103/PhysRevD.22.879
https://doi.org/10.1103/PhysRevD.22.879
https://doi.org/10.1088/0305-4470/24/4/003
https://doi.org/10.1007/BF02058634
https://doi.org/10.1007/BF02058634
http://arxiv.org/abs/quant-ph/0310035
https://doi.org/10.1103/PhysRevLett.73.1223
https://doi.org/10.1103/PhysRevLett.73.1223
https://doi.org/10.1038/nature09008
https://doi.org/10.1007/978-94-017-0849-4_6
https://doi.org/10.1007/BF01594946
https://doi.org/10.1093/bjps/45.1.95
https://doi.org/10.1063/1.532334


References 207

403. Pitowsky, I.: Betting on the outcomes of measurements: a Bayesian theory of quantum prob-
ability. Stud. Hist. Philos. Sci. Part B: Stud. Hist. Philos. Mod. Phys. 34(3), 395–414 (2003).
https://doi.org/10.1016/S1355-2198(03)00035-2 (Quantum Inf. Comput.)

404. Pitowsky, I.: Most Bell operators do not significantly violate locality (2003).
arXiv:quant-ph/0202053

405. Pitowsky, I.: Quantum mechanics as a theory of probability. In: Demopoulos, W., Pitowsky,
I. (eds.) Physical Theory and Its Interpretation. The Western Ontario Series in Philosophy of
Science, vol. 72, pp. 213–240. Springer, Netherlands (2006). https://doi.org/10.1007/1-4020-
4876-9_10

406. Pitowsky, I.: Geometry of quantum correlations. Phys. Rev. A 77, 062109 (2008). https://doi.
org/10.1103/PhysRevA.77.062109

407. Pitowsky, I., Svozil, K.: New optimal tests of quantum nonlocality. Phys. Rev. A 64, 014102
(2001). https://doi.org/10.1103/PhysRevA.64.014102

408. Planat, M.: On small proofs of the Bell-Kochen-Specker theorem for two, three and four
qubits. Eur. Phys. J Plus 127(8), 1–11 (2012). https://doi.org/10.1140/epjp/i2012-12086-x

409. Planck, M.: The concept of causality. Proc. Phys. Soc. 44(5), 529–539 (1932). https://doi.org/
10.1088/0959-5309/44/5/301

410. Planck, M.: Der Kausalbegriff in der Physik. Johann Ambrosius Barth, Leipzig, Germany
(1932)

411. Planck, M.: Max Planck - Selbstdarstellung im Filmportrait (1942). https://www.youtube.
com/watch?v=5mwHXBn6mcM. 15 Dec 1942. Accessed 22 Aug 2016

412. Plato, Gregory, A., Waterfield, R.: Timaeus and Critias. Oxford World’s Classics. Oxford
University Press, Oxford (2009)

413. Poincaré, H.: Wissenschaft und Hypothese. Teubner, Leipzig (1914)
414. Popescu, S.: Nonlocality beyond quantummechanics. Nat. Phys. 10, 264–270 (2014). https://

doi.org/10.1038/nphys2916
415. Popescu, S., Rohrlich, D.: Action and passion at a distance. In: Cohen, R.S., Horne, M.,

Stachel, J. (eds.) Potentiality, Entanglement and Passion-at-a-Distance: QuantumMechanical
Studies for Abner Shimony. Boston Studies in the Philosophy of Science, vol. 2, pp. 197–206.
Kluwer Academic publishers, Springer, Netherlands (1997). https://doi.org/10.1007/978-94-
017-2732-7_15

416. Popper, K.R.: Indeterminism in quantum physics and in classical physics I. Br. J. Philos. Sci.
1, 117–133 (1950). https://doi.org/10.1093/bjps/I.2.117

417. Popper, K.R.: Indeterminism in quantum physics and in classical physics II. Br. J. Philos. Sci.
1, 173–195 (1950). https://doi.org/10.1093/bjps/I.3.173

418. Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer, Berlin (1989)
419. Powers, A.R., Mathys, C., Corlett, P.R.: Pavlovian conditioning–induced hallucinations result

from overweighting of perceptual priors. Science 357(6351), 596–600 (2017). https://doi.org/
10.1126/science.aan3458

420. Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum Logics. Intrinsic Properties,
State Space and Probabilistic Topics. Fundamental Theories of Physics, vol. 44. Kluwer
Academic Publishers, Springer, Netherlands (1991)

421. Pulmannová, S.: Hidden variables and Bell inequalities on quantum logics. Found. Phys. 32
(2002). https://doi.org/10.1023/a:1014424425657

422. Putnam, H.: Reason. Truth and History. Cambridge University Press, Cambridge (1981)
423. Pykacz, J.: On Bell-type inequalities in quantum logics. In: Bitsakis, E.I., Nicolaides, C.A.

(eds.) The Concept of Probability: Proceedings of the Delphi Conference, October 1987,
Delphi, Greece, pp. 115–120. Springer, Netherlands (1989). https://doi.org/10.1007/978-94-
009-1175-8_12

424. Pykacz, J., Santos, E.: Hidden variables in quantum logic approach reexamined. J. Math.
Phys. 32 (1991). https://doi.org/10.1063/1.529327

425. Quisquater, J.J., Quisquater, M., Quisquater, M., Quisquater, M., Guillou, L., Guillou, M.A.,
Guillou, G., Guillou, A., Guillou, G., Guillou, S.: How to explain zero-knowledge protocols
to your children. In: Brassard, G. (ed.) Advances in Cryptology—CRYPTO’89 Proceedings,
pp. 628–631. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_60

https://doi.org/10.1016/S1355-2198(03)00035-2
http://arxiv.org/abs/quant-ph/0202053
https://doi.org/10.1007/1-4020-4876-9_10
https://doi.org/10.1007/1-4020-4876-9_10
https://doi.org/10.1103/PhysRevA.77.062109
https://doi.org/10.1103/PhysRevA.77.062109
https://doi.org/10.1103/PhysRevA.64.014102
https://doi.org/10.1140/epjp/i2012-12086-x
https://doi.org/10.1088/0959-5309/44/5/301
https://doi.org/10.1088/0959-5309/44/5/301
https://www.youtube.com/watch?v=5mwHXBn6mcM
https://www.youtube.com/watch?v=5mwHXBn6mcM
https://doi.org/10.1038/nphys2916
https://doi.org/10.1038/nphys2916
https://doi.org/10.1007/978-94-017-2732-7_15
https://doi.org/10.1007/978-94-017-2732-7_15
https://doi.org/10.1093/bjps/I.2.117
https://doi.org/10.1093/bjps/I.3.173
https://doi.org/10.1126/science.aan3458
https://doi.org/10.1126/science.aan3458
https://doi.org/10.1023/a:1014424425657
https://doi.org/10.1007/978-94-009-1175-8_12
https://doi.org/10.1007/978-94-009-1175-8_12
https://doi.org/10.1063/1.529327
https://doi.org/10.1007/0-387-34805-0_60


208 References

426. Rado, T.: On non-computable functions. Bell Syst. Tech. J. XLI(41)(3), 877–884 (1962).
https://doi.org/10.1002/j.1538-7305.1962.tb00480.x

427. Raspe, R.E.: The Travels and the Surprising Adventures of Baron Munchausen. CWilliam
Tegg & Co, London (1877)

428. Rawls, J.: A Theory of Justice, Revised edn. Harvard University Press, Belknap Press, Cam-
bridge (1971, 1999). http://www.hup.harvard.edu/catalog.php?isbn=9780674000780

429. Redhead, M.: Incompleteness, Nonlocality, and Realism: A Prolegomenon to the Philosophy
of Quantum Mechanics. Clarendon Press, Oxford (1990)

430. Reed, M., Simon, B.: Methods of Modern Mathematical Physics IV: Analysis of Operators.
Methods ofModernMathematical Physics, vol. 4. Academic Press, NewYork (1978). https://
www.elsevier.com/books/iv-analysis-of-operators/reed/978-0-08-057045-7

431. Rex, A.: Maxwell’s demon – a historical review. Entropy 19(6), 240 (2017). https://doi.org/
10.3390/e19060240

432. Rice, H.G.: Classes of recursively enumerable sets and their decision problems. Trans. Am.
Math. Soc. 74 (1953). https://doi.org/10.2307/1990888

433. Richardson,D.: Some undecidable problems involving elementary functions of a real variable.
J. Symb. Log. 33(4), 514–520 (1968). http://www.jstor.org/stable/2271358

434. Richman, F., Bridges, D.: A constructive proof of Gleason’s theorem. J. Funct. Anal. 162,
287–312 (1999). https://doi.org/10.1006/jfan.1998.3372

435. Rogers Jr., H.: Theory of Recursive Functions and Effective Computability. The MIT Press,
MacGraw-Hill, New York, Cambridge (1967)

436. Rotman, J.J.: An Introduction to the Theory of Groups. Graduate Texts in Mathematics, vol.
148, 4th edn. Springer, New York (1995)

437. Rucker, R.: Infinity and the Mind: The Science and Philosophy of the Infinite. Princeton
Science Library. Birkhäuser and Princeton University Press, Boston and Princeton (1982,
2004). http://press.princeton.edu/titles/5656.html

438. Russell, R.J.: Cosmology: From Alpha to Omega. Theology and the Sciences. Fortress Press,
Minneapolis (2008)

439. Sakurai, J.J., Napolitano, J.J.: Modern Quantum Mechanics, 2nd edn. Pearson Education,
Boston (1994, 2011). http://www.pearson.com.au/9781292037158

440. Salmon, W.C.: Zeno’s Paradoxes. Hackett Publishing Company (1970, 2001)
441. Sanguinetti, B., Martin, A., Zbinden, H., Gisin, N.: Quantum random number generation on a

mobile phone. Phys. Rev. X 4, 031056 (2014). https://doi.org/10.1103/PhysRevX.4.031056
442. Scarpellini, B.: Zwei unentscheidbare Probleme der Analysis. Zeitschrift für Mathematische

Logik und Grundlagen der Mathematik 9, 265–289 (1963). https://doi.org/10.1002/malq.
19630091802

443. Schachner, G.: The structure of Bell inequalities (2003). arXiv:quant-ph/0312117
444. Schaller, M., Svozil, K.: Partition logics of automata. Il Nuovo Cimento B 109, 167–176

(1994). https://doi.org/10.1007/BF02727427
445. Schaller, M., Svozil, K.: Automaton partition logic versus quantum logic. Int. J. Theor. Phys.

34(8), 1741–1750 (1995). https://doi.org/10.1007/BF00676288
446. Schaller, M., Svozil, K.: Automaton logic. Int. J. Theor. Phys. 35 (1996). https://doi.org/10.

1007/BF02302381
447. Schiff, L.I.: Quantum Mechanics. McGraw-Hill, New York (1955)
448. Schimpf,M., Svozil, K.: A glance at singlet states and four-partite correlations.Math. Slovaca

60, 701–722 (2010). https://doi.org/10.2478/s12175-010-0041-7
449. Schrijver, A.: Theory of Linear and Integer Programming (1998). http://eu.wiley.com/

WileyCDA/WileyTitle/productCd-0471982326.html
450. Schrödinger, E.: Quantisierung als Eigenwertproblem. Ann. Phys. 384(4), 361–376 (1926).

https://doi.org/10.1002/andp.19263840404
451. Schrödinger, E.: Was ist ein Naturgesetz? Naturwissenschaften (Sci. Nat.) 17 (1929). https://

doi.org/10.1007/bf01505758
452. Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften

23, 807–812, 823–828, 844–849 (1935). https://doi.org/10.1007/BF01491891; https://doi.
org/10.1007/BF01491914; https://doi.org/10.1007/BF01491987

https://doi.org/10.1002/j.1538-7305.1962.tb00480.x
http://www.hup.harvard.edu/catalog.php?isbn=9780674000780
https://www.elsevier.com/books/iv-analysis-of-operators/reed/978-0-08-057045-7
https://www.elsevier.com/books/iv-analysis-of-operators/reed/978-0-08-057045-7
https://doi.org/10.3390/e19060240
https://doi.org/10.3390/e19060240
https://doi.org/10.2307/1990888
http://www.jstor.org/stable/2271358
https://doi.org/10.1006/jfan.1998.3372
http://press.princeton.edu/titles/5656.html
http://www.pearson.com.au/9781292037158
https://doi.org/10.1103/PhysRevX.4.031056
https://doi.org/10.1002/malq.19630091802
https://doi.org/10.1002/malq.19630091802
http://arxiv.org/abs/quant-ph/0312117
https://doi.org/10.1007/BF02727427
https://doi.org/10.1007/BF00676288
https://doi.org/10.1007/BF02302381
https://doi.org/10.1007/BF02302381
https://doi.org/10.2478/s12175-010-0041-7
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471982326.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471982326.html
https://doi.org/10.1002/andp.19263840404
https://doi.org/10.1007/bf01505758
https://doi.org/10.1007/bf01505758
https://doi.org/10.1007/BF01491891
https://doi.org/10.1007/BF01491914
https://doi.org/10.1007/BF01491914
https://doi.org/10.1007/BF01491987


References 209

453. Schrödinger, E.: Discussion of probability relations between separated systems. Math. Proc.
Camb. Philos. Soc. 31(04), 555–563 (1935). https://doi.org/10.1017/S0305004100013554

454. Schrödinger, E.: Science and theHumanTemperament.GeorgeAllen&Unwin (1935). https://
archive.org/details/scienceandthehum029246mbp

455. Schrödinger, E.: Probability relations between separated systems. Math. Proc. Camb. Philos.
Soc. 32(03), 446–452 (1936). https://doi.org/10.1017/S0305004100019137

456. Schrödinger, E.: Nature and the Greeks. Cambridge University Press, Cambridge (1954,
2014). http://www.cambridge.org/9781107431836

457. Schrödinger, E.: The Interpretation of Quantum Mechanics. Dublin Seminars (1949–1955)
and Other Unpublished Essays. Ox Bow Press, Woodbridge, Connecticut (1995)

458. Schuster, H.G., Just, W.: Deterministic Chaos. Physik Verlag, Wiley, Weinheim (1984, 2005)
459. Schweidler, E.V.: Über Schwankungen der radioaktiven Umwandlung, pp. German part, 1–3.

Paris (1906). https://archive.org/details/premiercongrsin03unkngoog
460. Schwinger, J.: Unitary operators bases. Proc. Natl. Acad. Sci. (PNAS) 46, 570–579 (1960).

https://doi.org/10.1073/pnas.46.4.570
461. Schwinger, J., Scully, M.O., Englert, B.G.: Is spin coherence like Humpty-Dumpty? II. Gen-

eral theory. Zeitschrift für Physik D: AtomsMol. Clust. 10(2–3), 135–144 (1988). https://doi.
org/10.1007/BF01384847

462. Scully, M.O., Drühl, K.: Quantum eraser: a proposed photon correlation experiment concern-
ing observation and “delayed choice” in quantum mechanics. Phys. Rev. A 25(4), 2208–2213
(1982). https://doi.org/10.1103/PhysRevA.25.2208

463. Scully, M.O., Englert, B.G., Walther, H.: Quantum optical tests of complementarity. Nature
351, 111–116 (1991). https://doi.org/10.1038/351111a0

464. Seevinck,M.P.: Can quantum theory and special relativity peacefully coexist? Technical report
(2010). arXiv:1010.3714

465. Shaw, R.S.: Strange attractors, chaotic behavior, and information flow. Zeitschrift für Natur-
forschung A 36, 80–112 (1981). https://doi.org/10.1515/zna-1981-0115

466. Shi, Y.: Both Toffoli and controlled-NOT need little help to do universal quantum comput-
ing. Quantum Inf. Comput. 3(1), 84–92 (2003). http://dl.acm.org/citation.cfm?id=2011508.
2011515
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